版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年江苏省淮安市中考数学真题
(考试时间:120分钟满分:150分)
第I卷(选择题共24分)
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一
项符合题目要求)
1.下列实数中,属于无理数的是()
A.-2B.0C.后D.5
2.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是().
A.CO》
C.
3.健康成年人的心脏每分钟流过的血液约4900mL.数据4900用科学记数法表示为().
A.0.49xlO4B.4.9xlO4C.4.9X103D.49xl02
4.下列计算正确的是().
a2^=a
A.2a-a=2B.C.aD.a2-a4=a'
5.实数4、匕在数轴上的对应点的位置如图所示,下列结论正确的是().
-3-2-10123
A.a<-2B.b<2D.-a<b
6.将直角三角板和直尺按照如图位置摆放,若Nl=56。,则N2度数是().
C.36°D.56°
7.如图是一个几何体的三视图,则该几何体的侧面积是().
主视图左视图
俯视图
A.127rB.154C.18乃D.24万
8.如图,在平面直角坐标系中,一次函数y=Gr+b的图象分别与x轴、y轴交于48两点,且与反比例
L「41
函数),=一在第一象限内的图象交于点C.若点A坐标为(2,0),胃=:,则女的值是().
X2
A.73B.26C.373D.4A/3
第H卷(非选择题共126分)
二、填空题(本大题共8小题,每小题3分,共24分)
9.若式子病?在实数范围内有意义,则x的取值范围是.
10.方程47=1的解是_______.
2x+]
11.若等腰二角形的周长是20cm,一腰长为7cm,则这个二角形的底边长足cm.
12.若。+»—1=0,则3。+6/?的值是.
13.招甲、乙两组各10个数据绘制成折线统计图(如图),两组数据的平均数都是7,设甲、乙两组数据的方
差分别为4、4,则,或(填“=”或
14.如图,四边形A8C£)是。O的内接四边形,8c是。。的直径,8C=2C£>,则Z8W的度数是
15.如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到JLBC,
则tanZACB的值是.
16.在四边形A8CD中,AB=BC=2,ZA3C=120。,3"为NA8C内部的任一条射线(NCBH不等于
60。),点C关于的对称点为C,宜线AC与3〃交于点尸,连接CC;CF,则丁面积的最
大值是.
三、解答题(本大题共11小题,共102分,解答时应写出必要的文字说明、证明过程或演算
步骤)
17.(1)计算:卜2|+(1+6)°-囱;
2x+l>3(x-l),
(2)解不等式组:x-1
x+----<1.
3
18.先化简,再求值:»其中a=>/5+1.
/-2。+1
19.已知:如图,点。线段上一点,BD=AC,ZE=ZABC,DE!/AC.求证:DE=BC.
墙
//“//////////〃//////〃/〃〃
AB
生态园
DC
23.根据以下材料,完成项目任务,
项目测量古塔的高度及古塔底面圆的半径
测量
测角仪、皮尺等
工具
P说明:点。为古塔底面圆圆心,测角仪高度A6=8=1.5m,
在B、D处分别测得古塔顶端的仰角为32。、45。,BD=9m测角
测量f
仪。。所在位置与古塔底部边缘距离DG=12.9m.点
BDGQB、D、G、Q在同一条直线上.
参考
sin32°x0.530,cos32°«0.848,tan32°«0.625
数据
项目任务
(1)求出古塔的高度.
(2)求出古塔底面圆的半径.
24.如图,中,ZC=90°.
(1)尺规作图:作OO,使得圆心。在边AB上,。。过点3且与边AC相切于点。(请保留作图痕
迹,标明相应的字母,不写作法);
(2)在(1)条件下,若44区。=60。.44=4,求OO与“15。重叠部分的面积.
25.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时30min,结束
后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为70km/h.两车之间的距离
y(km)与慢车行驶的时间X(h)的函数图像如图所示.
(1)请解释图中点A的实际意义;
(2)求出图中线段A8所表示的函数表达式;
(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
26.已知二次函数f+区一3(人为常数).
(1)该函数图像与“轴交于48两点,若点A坐标为(3,0),
①则力的值是,点8的坐标是;
②当0<八5时,借助图像,求自变量x的取值范围;
(2)对于一切实数%,若函数值总成立,求,的取值范围(用含匕的式子表示);
(3)当帆vyv〃时(其中"八〃为实数,m<n)t自变量x的取值范围是I<xv2,求〃和匕的值以及
加的取值范围.
27.综合与实践
定义:将宽与长的比值为+(八为正整数)的矩形称为〃阶奇妙矩形.
T
(1)概念理解:
当〃=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长(8)
的比值是.
(2)操作验证:
用正方形纸片A5CD进行如下操作(如图(2)):
第一•步:对折正方形纸片,展开,折痕为E尸,连接CE;
第二步:折叠纸片使CO落在CE1上,点。的对应点为点〃,展开,折痕为CG:
第三步:过点G折叠纸片,使得点分别落在边A。、BC上,展开,折痕为GK.
试说明:矩形GQCK是1阶奇妙矩形.
(3)方法迁移:
用正方形纸片ABC£>折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
(4)探究发现:
小明操作发现任一个〃阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点、E为正方形ABCD边
4B上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形的周
长与矩形GQCK的周长比值总是定值.请写出这个定值,并说明理由.
2023年江苏省淮安市中考数学真题
(考试时间:120分钟满分:150分)
第I卷(选择题共24分)
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一
项符合题目要求)
1.下列实数中,属于无理数的是()
A.-2B.OC.72D.5
【答案】C
【解析】
【分析】无理数是指无限不循环小数,根据定义逐个判断即可.
【详解】解:-2、0、5是有理数,、乃是无理数.
故选:C.
【点睛】本题考查了对无理数定义的应用,能理解无理数的定义是解此题的关键.
2.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是(
【答案】B
【解析】
【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,
直线两旁的部分能够完全重合的图形.
【详解】解:选项A、C、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不
是轴对称图形;
选项B能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;
故选:B.
【点睛】本题考杳了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
3.健康成年人的心脏每分钟流过的血液约4900mL.数据4900用科学记数法表示为().
A.0.49xlO4B.4.9xlO4C.4.9X103D.49x10之
【答案】C
【解析】
【分析】将4900写成ax10"的形式即可,其中1<忖<10,〃为正整数.
【详解】解:4900的小数点向左移动3位得4.9,
因此4900=4.9x1()3,
故选C.
【点睛】本题考查科学记数法,解题的关键是确定axlO"中。和〃的值.
4.下列计算正确的是().
5246
A.2a-a=2B.(1)=aC.o'a=o1D.a-a=a
【答案】D
【解析】
【分析】根据合并同类项,¥乘方,同底数幕的乘除法则,逐一进行计算后判断即可.
【详解】解:A、2a-a=a,故A错误;
B、(〃2)3=*,故B错误;
C、故C错误;
D、故D正确;
故选D.
【点睛】本题考查合并同类项,幕的乘方,同底数鼎的乘除,熟练掌握相关运算法则,是解题的关健.
5.实数4、8在数轴上的对应点的位置如图所示,下列结论正确的是().
I逮III也一
-3-2-10123
A.a<-2B.b<2C.a>bD.-a<b
【答案】D
【解析】
【分析】根据实数在数轴上的位置,判断实数的大小关系,即可得出结论.
【详解】解:由图可知,|4=一。〈2〈人,
A、av-2,错误:
B、b<2,错误;
C、a>bt错误;
D、-a<b,正确;
故选D.
【点睛】本题考查利用数轴比较实数的大小关系.正确的识图,掌握数轴上的数从左到右依次增大,是解
题的关键.
6.将直角三角板和直尺按照如图位置摆放,若Nl=56。,则N2的度数是().
A.26°B.30°C.36。D.56°
【答案】A
【解析】
【分析】根据平行线的性质可得N3=N1=56。,进而根据三角形的外角的性质,即可求解.
【详解】解:如图所示,
・・•直尺的两边平行,
・・・Z3=N1=56。,
又・・・Z3=30o+N2,
:.Z2=Z3-30°=56°-30°=26°,
故选:A.
【点睛】本题考查了平行线的性质,三角形的外交的性质,熟练掌握三角形的外角的性质是解题的关键.
7.如图是一个几何体的三视图,则该几何体的侧面积是().
主视图左视图
■
*—6--
俯视国
A.127rB.154C.18乃D.24万
【答案】B
【解析】
【分析】根据题意可得这个几何体为圆锥,然后求出圆锥的母线长为5,再根据圆锥的侧面(扇形)面积
公式,即可求解.
【详解】解:根据题意得:这个几何体为圆锥,
如图,过点A作ADJL8C于点。,
根据题意得:AB=AC.AO=4,BC=6,
:.CD=-BC=3,
2
:,AC=y/Ab2^-Cb2=5»
即圆锥的母线长为5,
・・・这个几何体的侧面积是,万x6x5=15?.
2
故选:B
【点睛】本题主要考查了简单几何体的三视图,求圆锥的侧面积,根据题意得到这个几何体为圆锥是解题
的关键.
8.如图,在平面直角坐标系中,一次函数y=JIr+力的图象分别与x轴、轴交于43两点,且与反比例
kCAI
函数)=一在第一象限内的图象交于点C.若点A坐标为(2,0),F=G,则上的值是().
X2
A.gB.2GC.373D.4追
【答案】C
【解析】
【分析】过点。作轴于点。,则CD〃OA,可得△BOAsaBDC,进而根据已知条件的
8=3,求得直线A3的解析式,将x=3代入,得出点C的坐标,代入反比例函数解析式,即可求解.
【详解】解:如图所示,过点。作C£>_Ly轴于点。,则CD〃OA
・•・Z^BOA^^BDC
.CDBC
••布一记
V—=-,A(2,0)
AB2Kf
.BC3
.CD3
••=—
22
解得:CD=3
,・•点4(2,0)在y=6x+b上,
・•・2gb=0
解得:b=-25/3
・•・直线AB的解析式为y=后一2百
当工=3时,y=6
即C(3,4)
又反比例函数y=与在第••象限内的图象交于点。
x
:・k=3上,
故选:C.
【点睛】本题考查了反比例函数的性质,待定系数法求一次函数解析式,相似三角形的性质与判定,求得
点C的坐标是解题的关键.
第n卷(非选择题共126分)
二、填空题(本大题共8小题,每小题3分,共24分)
9.若式子/三在实数范围内有意义,则x的取值范围是.
【答案】应5
【解析】
【分析】先根据二次根式有意义的条件列出关于”的不等式,求出工的取值范围即可.
【详解】•・・J=在实数范围内有意义,
・・・尸530,解得x35.
故答案为:x>5
【点睛】此题考查了二次根式有意义的条件,二次根式右有意义的条件是被开方数同时也考查了
解一元一次不等式.
10.方程47=1的解是_______.
2x+l
【答案】x=-2
【解析】
【分析】将分式方程转化为整式方程,求解即可.
x—1
【详解】解:由一7=1可得:x-l=2x+l
2x+l
解得工二一2
经检验x=-2是原分式方程的解,
故答案为:x=-2
【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.
11.若等腰三角形的周长是20cm,一腰长为7cm,则这个三角形的底边长是cm.
【答案】6
【解析】
【分析】根据等腰三角形的性质求解即可.
【详解】解:三角形的底边长为20—7x2=6cm
故答案为:6
【点睛】此题考查了等腰三角形的性质,解题的关键是掌握等腰三角形腰长相等.
12.若力一1=0,则3。+6/?的值是.
【答案】3
【解析】
【分析】根据已知得到。+力=1,再代值求解即可.
【详解】解:・・・。+加一1=0,
:.a+2b=1,
:.3a+6b=3(。+2^)=3,
故答案为:3.
【点睛】本题考查代数式求值,利用整体思想求解是解答的关键.
13.招甲、乙两组各10个数据绘制成折线统计图(如图),两组数据的平均数都是7,设甲、乙两组数据的方
差分别为扁、$3则44(填或.
【解析】
【分析】根据折线统计图可得甲的数据波动较小,进而根据方差的意义即可求解.
【详解】解:由折线统计图可得,甲的数据波动较小,则%
故答案为:<.
【点睛】本题考查了折线统计图,方差的意义,理解数据波动小的方差小是解题的关键.
14.如图,四边形ABC。是OO的内接四边形,8C是(。的直径,=2c。,则的度数是
【答案】120
【解析】
【分析】解:如图,连接30,由8c是0。的直径,可得/班心=90。,日BC=2CD,可得
NCBO=30°,ZC=60%根据/84。=180。一NC,计算求解即可.
【详解】解:如图,连接3£>,
•••3。是OO的直径,
・•・^BDC=90°,
•・•BC=2CD,
:.ZCBD=30°,
・•・ZC=60°,
,:四边形A8CO是OO的内接四边形,
・・・ZBAD=180°-ZC=120°,
故答案为:120.
【点睛】本题考查了直径所对的圆周角为直角,含30。的直角三角形,圆内接四边形的性质.解题的关键
在于明确角度之间的数量关系.
15.如图,3个大小完全相同的正六边形无缝隙、不重叠的拼在一起,连接正六边形的三个顶点得到UWC,
则tanNACS的值是.
C
A
B
【答窠】也
3
【解析】
【分析】如图所示,补充一个与己知相同的正六边形,根据正六边形的内角为120。设正六边形的边长为
1.求得CD,AD,根据正切的定义,即可求解.
【详解】解:如图所示,补充一个与已知相同的正六边形,
•・•正六边形对边互相平行,且内角120\
・•.NEDF=30°,AADB=90°
过点£作EG_LF。于G,
:・FD=2FG=2Mxeos30。=6
设正六边形的边长为1,则CD=3,AD=2FD=Z6
.皿团处二辿
CD3
故答案为:巫.
3
【点睛】本题考查了正六边形的性质,解直角三角形,熟练掌握正六边形的性质是解题的关键.
16.在四边形A3CO中,48=8。=2,乙48。=120。,8"为/43。内部的任一条射线(NQ阳不等于
60。),点C关于8”的对称点为C,直线AC'与8”交于点F,连接CC、CF,则△CCT面积的最
大值是.
【答案】4百
【解析】
【分析】连接BC,根据轴对称的性质可得C8=C'aCf=C7,进而可得AC,C'在半径为2的。3
上,证明△CC/是等边三角形,当CC取得最大值时,△C”面积最大,根据圆的直径最大,进而
得出CC最大值为4,即可求解.
【详解】解:如图所示,连接8C',
•・•点C关于BH的对称点为C,
:.CB=C'B,CF=C'F,
•:AB=BC=2,
・•・AC,。'在半径为2的OB上,
在优弧4c上任取一点E,连接AEEC,
则44EC,N4BC=60。,
2
・:450=120。,
・•・ZACfC=180°-ZAEC=180°--ZABC=120°,
2
:.ZCCF=60°,
:.△CC户是等边三角形,
当CC取得最大值时,△CCT面积最大,
•••C在08上运动,则CC最大值4,
则△81户面积的最大值是立x4?=4、回.
4
故答案为:4-73-
【点睛】本题考查了轴对称的性质,圆周角定理,圆内接四边形对角互补,等边三角形的性质,得出CC
最大值为4是解题的关键.
三、解答题(本大题共H小题,共102分,解答时应写出必要的文字说明、证明过程或演算
步骤)
17.(1)计算:卜2|+(1+6)°-囱;
2x+l>3(x-l),
(2)解不等式组:x-1
x+------<1.
3
【答案】(1)0;(2)x<\
【解析】
【分析】(1)根据化简绝对值,零指数累,求一个数的算术平方根,进行计算即可求解;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到
确定不等式组的解集.
【详解】解:(1)卜2|+(1+6)°一百
=2+1-3
=0:
2x+l>3(x-l)®
解不等式①得:x<4,
解不等式②得:x<\.
・•・不等式组的解集为:x<\.
【点睛】本题考查了实数的混合运算,零指数辕,解一元一次不等式组,熟练掌握以上知识是解题的关
键.
18.先化简,再求值:-1+,其中〃=石+1.
〃~一2。+1(a-\)
【答案】—,正
a-\5
【解析】
【分析】先将括号内式子通分,变分式除法为乘法,约分化简,再将〃=石+1代入求值.
【详解】解:
aa-\
(tz-1)2a
1
=,
a-\
将a=>A+l代入,得:
1_175
原式=
x/5+1-1->/5-5
【点睛】本题考查分式的化简求值,分母有理化,解题的关键是掌握分式的运算法则.
19.已知:如图,点。为线段上一点,BD=AC,ZE=ZABC,DE//AC.求证:DE=BC.
E
\\A
C
BD
【答案】证明见详解;
【解析】
【分析】根据必〃力C得到NEDB=NC,结合8O=AC,NE=ZABC即可得至心8瓦注“BC即
可得到证明.
【详解】证明:・・・zw/。,
:・ZEDB=/C,
NEDB=ZC
•・•<ZE=NA8C,
BD=AC
:...BED^ABC(AAS),
:.DE=BC.
【点睛】本题考查三角形全等的判定与性质,解题的关键是根据平行线得到三角形全等判定的条件.
20.小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(4:智取芭蕉扇、B:三打白骨精、C:
盘丝洞)中各自随机选择一个项目游玩.
(1)小华选择。项目的概率是;
(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.
【答案】(1)-
3
⑵-
3
【解析】
【分析】(1)直接由概率公式求解即可;
(2)列表法求概率即可求解.
【小问1详解】
解:共有三个热门项目,小华选择。项目的概率是:;
3
故答案为:—.
3
【小问2详解】
解:列表法如图,
小华
ABC
小丽
AAAABAC
BBCBBBC
CCACBCC
共有9种等可能结果,其中小华、小玲选择不同游玩项目,有6利
・♦・小华、小玲选择不同游玩项目的概率.
93
【点睛】本题考查的是根据概率公式求概率,用树状图法求概率.树状图法可以不重复不遗漏的列出所有可
能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点
为:概率=所求情况数与总情况数之比.
21.为了调动员工的积极性,商场家电部经理决定确定一个适当的月销售目标,对完成目标的员工进行奖
励.家电部对20名员工当月的销售额进行统计和分析.
数据收集(单位:万元):
(1)填空:a=,h=.
(2)若将月销售额不低于7万元确定为销售目标,则有名员工获得奖励.
(3)经理对数据分析以后,最终对一半的员工进行了奖励.员工甲找到经理说:“我这个月的销售额是
7.5万元,比平均数7.44万元高,所以我的销售额超过一半员工,为什么我没拿到奖励?“假如你是经
理,请你给出合理解释.
【答案】(1)4,7.7
(2)12(3)7.5万元小于中位数7.7万元,有一半多的员工销售额比7.5万元高,故员工甲没拿到奖励
【解析】
【分析】(1)根据所给数据及中位数的定义求解;
(2)根据频数分布表求解;
(3)利用中位数进行决策.
【小问1详解】
解:该组数据中有4个数在7与8之间,故a=4,
7.6+7.8
将20个数据按从小到大顺序排列,第10位和第11位分别是767.8,故中位数b
2
故答案为:4,7.7;
【小问2详解】
解:月销售额不低于7万元的有:4+4+4=12(人),
故答窠为:12;
【小问3详解】
解:7,5万元小于中位数7.7万元,有一半多的员工销售额比7.5万元高,故员工甲没拿到奖励.
【点睛】本题考查频数分布表,中位数,利用中位数做决策等,解题的关键是掌握中位数的求法及意义.
22.为了便于劳动课程的开展,学校打算建一个矩形生态园48co(如图),生态园一面靠墙(墙足够长),
另外三面用18m的篱笆围成.生态园的面积能否为40m2?如果能,请求出A8的长;如果不能,请说明理
墙
4\B
生态园
D-------------------------C
【答案】的长为8米或10米
【解析】
【分析】设=x米,则AD=BC=g(18—x)米,根据矩形生态园A8CD面积为40m2,建立方程,解
方程,即可求解.
则4D=BC=g(18-力米,根据题意得,
【详解】解:设=x米,
1
—X(18-x)=40,
2
解得:%=8,劣=10,
答:A8的长为8米或10米.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
23.根据以下材料,完成项目任务,
项目测量古塔的高度及古塔底面圆的半径
测量
测角仪、皮尺等
工具
P说明:点。为古塔底面圆圆心,测角仪高度AB=8=1.5m,
在B、D处分别测得古塔顶端的仰角为32。、45。,BD=9m,测角
测量
八川公平3:……用仪CO所在位置与古塔底部边缘距离£>G=12.9m.点
BDGQB、D、G、Q在同一条直线上.
参考
sin32°»0.530,cos320工0.848,tan320工0.625
数据
项目任务
(1)求出古塔的高度.
(2)求出古塔底面圆的半径.
【答窠】(1)古塔的高度为16.5m;(2)古塔底面圆的半径为2.1m.
【解析】
【分析】(1)延长AC交尸Q于点E,则四边形CDQE是矩形,设=则二河,根据
PFX
tanZPAE=—=——=tan32°«0.625,解方程,即可求古塔的高度;
AEx+9
(2)根据OQ=CE=15m,£>G=12.9m,即可求得古塔底面圆的半径.
【详解】解:(1)如图所示,延长AC交PQ于点E,则四边形。。。后是矩形,
:.QE=CD,
依题意,/PCE=45。,ZPAE=32°,AB=CD=QE=1.5m,
PE
设qE=xm,则CE=---------=x,
tan乙PCE
PEx
在RtAPAE中,tanZPAE=—=——=tan32°»0.625,
AEx+9
解得:x=15,
,古塔的高度为PE+QE=15+1.5=16.5(m).
(2)DQ=CE=\5m,ZX7=12.9m,
:.Ge=15-12.9=2.1(m).
答:古塔的高度为16.5m,古塔底面圆的半径为2.Im.
【点睛】本题考查了解直角三角形的应用一俯角仰角问题,熟练掌握三角函数的定义是解题的关键.
24.如图,在RtZiABC中,ZC=90°.
(1)尺规作图:作OO,使得圆心。在边A3上,。。过点B且与边AC相切于点。(请保留作图痕
迹,标明相应的字母,不写作法);
(2)在(1)的条件下,若44小。=60。.48=4,求O。与"5C重叠部分的面积.
【答案】(1)见解析(2)—n+—
279
【解析】
【分析】(1)作/ABC的角平分线交AC于点。,过点。作。O_LAC,交AB于点O,以。为圆心,OB
为半径作OO,即可;
(2)根据含30度角的直角三角形的性质,求得圆的半径,设。。交BC于点E,连接QE,可得△OBE
是等边三角形,进而根据0。与金。重叠部分的面积等于扇形面积与等边三角形的面积和,即可求解.
【小问1详解】
解:如图所示,。O即为所求;
【小问2详解】
解:・;々43。=60。,45=4,。。是。。的切线,
・•・N4=30。,
.・.DO=OB=-AO,
2
则AO+O5=3OB=4,
4
解得:OB=一,
3
如图所示,设O。交5C于点E,连接0E,
・・•ZABC=60°.OB=OE,
*'•△OBE是等边三角形,
如图所示,过点E作EF上BO于点F,
・•・ZOEF=30°
114
・•・OF=-OE=-x-
223
在RtZ\OEV中,4",
4?
:.SCEB=-xOBxEF=-x-xlx-xV3=—
'CEB2232343J
・・・N3QE=60。,则ZAQE=120。,
壬C八的右如,120/4丫6<4?164石
••。。与Z-AJ5C7重叠部分的面积为---71X—H-------X—=7TH--------.
360UJ4279
【点睛】本题考查了基本作图,切线的性质,求扇形面积,熟练掌握基本作图与切线的性质是解题的关
键.
25.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地卸装货物用时30min,结束
后,立即按原路以另一速度匀速返回,直至与慢车相遇,已知慢车的速度为7()km/h.两车之间的距离
y(km)与慢车行驶的时间x(h)的函数图像如图所示.
(1)请解释图中点A的实际意义;
(2)求出图中线段A3所表示的函数表达式;
(3)两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需多长时间.
【答窠】(1)快车到达乙地时,慢车距离乙地还有120km
(2)y=-70x+330
(3)2.8小时
【解析】
【分析】(1)根据点A的纵坐标最大,可得两车相距最远,结合题意,即可求解;
(2)根据题意得出3(3.5,85),进而待定系数法求解析式,即可求解;
(3)先求得快车的速度进而得出总路程,再求得快车返回的速度,即可求解.
【小问1详解】
解:根据函数图象,可得点A的实际意义为:快车到达乙地时,慢车距离乙地还有120km
【小问2详解】
解:依题意,快车到达乙地卸装货物用时30min,则点8的横坐标为3+'=3.5,
2
此时慢车继续行驶;小时,则快车与慢车的距离为120—70x』=120—35=85,
22
・•・8(3.5,85)
设直线AB的表达式为y=丘+力
*(85=3.5女+b
i2O=3k+b
A:=-70
解得:
8=330
・•・直线AB的表达式为y=-70X+330
【小问3详解】
解:设快车去乙地的速度为。千米/小时,则3(。—7。)=120,
解得:4=110
:,甲乙两地的距离为110x3=330千米,
设快车返回的速度为-千米/小时,根据题意,
gx(i,+70)=330-(3+;)x70
解得:v=100.
•两车相遇后,如果快车以返回的速度继续向甲地行驶,求到达甲地还需乂
・・33°-5100_(小时)
一乙
100
【点睛】本题考查了一次函数的应用,一元一次方程,根据函数图象获取信息是解题的关键.
26.已知二次函数y=W+力工一3(6为常数).
(1)该函数图像与“轴交于A3两点,若点A坐标为(3,0),
①则方的值是,点5的坐标是;
②当0<yv5时,借助图像,求自变量k的取值范围;
(2)对于一切实数X,若函数值总成立,求,的取值范围(用含匕的式子表示);
(3)当mvyv〃时(其中〃"〃为实数,m<n)t自变量x的取值范围是1<%<2,求〃和匕的值以及
m的取值范围.
【答案】(1)①-2,(-l,0)②—2<rv—l或3<“<4
(2)r<-3-—
4
21
(3)b=-3,n=-5,m<----
4
【解析】
【分析】(1)①待定系数法求出函数解析式,令y=o,求出点B的坐标即可;②画出函数图像,图像法求
出x的取值范围即可;
(2)求出二次函数的最小值,即可得解:
(3)根据当时(其中机、〃为实数,),自变量X的取值范围是1<冗<2,得到x=l和x=2
关于对称轴对称,进而求出。的值,得到〃为x=l的函数值,求出〃,推出直线y="过抛物线顶点或在
抛物线的下方,即可得出结论.
【小问1详解】
解:①•・•函数图像与x轴交于43两点,点A坐标为(3,0),
・•・0=32+36-3,
・'•力=-2,
y=x2-2x-3,
・••当y=0时,入2一2工一3=0,
:.%1=-l,x2=3,
・••点5的坐标是(一1,0);
故答案为:-2,(-1,0);
2
@y=x-2x-3f
列表如下:
XL-2-1134L
yL50-405L
画出函数图像如下:
由图可知:当。<y<5时,-2〈¥〈一1或3cx<4;
【小问2详解】
..2(J丫2N
.y=x+bx-3=\x+—-3-----»
I2)4
・••当K=—乡时,y有最小值为一3-2;
24
♦・•对于一切实数%,若函数值总成立,
【小问3详解】
Vy=x2+Z?x-3=lx+-I-3--,
,抛物线的开口向上,对称轴为尢=一2,
2
又当用vyv〃时(其中“、〃为实数,MV〃),自变量x的取值范围是1<刀<2,
・•・直线y=〃与抛物线两个交点为(1,〃),(2,〃),直线过抛物线顶点或在抛物线的下方,
・・・(1,〃),(2㈤关于对称轴对称,
.b1+2
••——=9
22
.**/?=—3,
321
当x-二时,y有最小值——,
24
【点睛】本题考查二次函数的图像和性质,熟练掌握二次函数的图像和性质,利用数形结合和分类讨论的
思想进行求解,是解题的关键.本题的综合性较强,属于中考压轴题.
27.综合与实践
定义:将宽与长的比值为妇上1二1(〃为正整数)的矩形称为〃阶奇妙矩形.
T
(1)概念理解:
当〃=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(与长(C。)
的比值是.
(2)操作验证:
用正方形纸片ABCO进行如下操作(如图(2)):
第一步:对折正方形纸片,展开,折
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮服务承揽合同三篇
- 管道行业安全管理工作心得
- 2025年全球及中国丙二醛行业头部企业市场占有率及排名调研报告
- 2025年全球及中国头发护理用神经酰胺行业头部企业市场占有率及排名调研报告
- 2025年全球及中国DHA微囊粉行业头部企业市场占有率及排名调研报告
- 2025年全球及中国三维足底扫描系统行业头部企业市场占有率及排名调研报告
- 2025-2030全球电动跨式堆垛机行业调研及趋势分析报告
- 2025年全球及中国介孔二氧化硅微球行业头部企业市场占有率及排名调研报告
- 2025年全球及中国多相真空萃取机行业头部企业市场占有率及排名调研报告
- 2025-2030全球豆荚酒店行业调研及趋势分析报告
- 2025年春季学期学校德育工作计划安排表(完整版)
- 五年级口算题卡每天100题带答案
- 2025届新高考英语复习阅读理解说明文解题策略
- 《社区康复》课件-第一章 总论
- 上海中考英语考纲词汇
- 【工商管理专业毕业综合训练报告2600字(论文)】
- 《幼儿园健康》课件精1
- 22S803 圆形钢筋混凝土蓄水池
- 2023年开心英语四年级上册全册练习
- Hadoop大数据开发实例教程高职PPT完整全套教学课件
- 企业中层管理人员测评问题
评论
0/150
提交评论