版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024-2025学年山东省郯城县红花镇初级中学九上数学开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将直线y=3x向下平移4个单位后所得直线的解析式为()A.y=3x+4 B.y=3x-4 C.y=3x+42、(4分)如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCBC.AD=BC D.AC⊥BD3、(4分)某数学兴趣小组6名成员通过一次数学竞赛进行组内评比,他们的成绩分别是89,92,91,93,96,91,则关于这组数据说法正确的是()A.中位数是92.5 B.平均数是92 C.众数是96 D.方差是54、(4分)下列命题是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的菱形是正方形C.对角线互相垂直且相等的四边形是正方形 D.对角线相等的四边形是矩形5、(4分)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x= D.1+2x=6、(4分)如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有(
)条A.1 B.2 C.3 D.47、(4分)如图,在三角形ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到A.4cm B.3cm C.2cm D.1cm8、(4分)化简的结果是()A.a-b B.a+b C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.10、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.11、(4分)因式分解:.12、(4分)若一组数据的平均数,方差,则数据,,的方差是_________.13、(4分)已知一次函数与的图象交于点P,则点P的坐标为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.15、(8分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由两工程队先后接力完成.工作队每天整治12米,工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列的方程组,请你分别指出未知数表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示________________,y表示_______________;乙:x表示________________,y表示_______________.(2)求两工程队分别整治河道多少米.(写出完整的解答过程)16、(8分)选择合适的方法解一元二次方程:17、(10分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.18、(10分)如图所示,正方形ABCD的边长为4,AD∥y轴,D(1,-1).(1)写出A,B,C三个顶点的坐标;(2)写出BC的中点P的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.20、(4分)若是方程的解,则代数式的值为____________.21、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数方差根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.22、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.23、(4分)如图,经过平移后得到,下列说法错误的是()A. B.C. D.二、解答题(本大题共3个小题,共30分)24、(8分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=45,则当四边形DEFG为菱形时,点G的坐标为_____.25、(10分)如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?
26、(12分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
只向下平移,让比例系数不变,常数项减去平移的单位即可.【详解】直线y=3x向下平移4个单位后所得直线的解析式为y=3x故选:D本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.2、D【解析】
根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.3、B【解析】试题解析:这组数据按照从小到大的顺序排列为:89,91,91,92,93,96,则中位数为:,故A错误;平均数为:,故B正确;众数为:91,故C错误;方差S2==,故D错误.故选A.4、B【解析】
根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.【详解】A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;B:对角线相等的菱形是正方形,故选项正确,为真命题;C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;D:对角线相等的平行四边形是矩形,故选项错误,为假命题;故选:B.本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.5、B【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【详解】解:假设股票的原价是1,平均增长率为.则90%(1+x)2=1,即(1+x)2=,故选B.此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.6、C【解析】
如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.【详解】解:如图1,过点B作BG∥EF,过点C作CN∥PH,∵正方形ABCD,∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,∴四边形BGEF,四边形PNCH是平行四边形,
EF=BG,PH=CN,∵PH=EF,∴BG=CN,在Rt△ABG和Rt△CBN中,BG=CN∴Rt△ABG≌Rt△CBN(HL)∴∠ABG=∠BCN,∵∠ABG+∠GBC=90°∴∠BCN+∠GBC=90°,∴BG⊥CN,∴PH⊥EF,∴过点M作EF的垂线满足的有一条直线;如图2图2中有两条P1H1,P2H2,所以满足条件的直线PH最多有3条,故答案为:C本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.7、C【解析】
如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.【详解】如图,过点D作DE⊥AB于E,
∵BD:DC=1:1,BC=6,
∴DC=11+2×6=1,
∵AD平分∠BAC,∠C=90∘,
∴DE=DC=1.
故选:C.本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.8、B【解析】
直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】.故选B.此题主要考查了分式的混合运算,熟练掌握运算法则是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1分米或分米.【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【详解】2是斜边时,此直角三角形斜边上的中线长=×2=1分米,2是直角边时,斜边=,此直角三角形斜边上的中线长=×分米,综上所述,此直角三角形斜边上的中线长为1分米或分米.故答案为1分米或分米.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.10、1【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.【详解】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.11、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式后继续应用平方差公式分解即可:.12、【解析】
根据题意,由平均数的公式和方差公式可知,新数据的平均数为6【详解】解:∵,∴,∵,∴;故答案为:3.本题考查了平均数和方差的计算,解题的关键是熟练掌握求平均数和方差的方法.13、(3,0)【解析】
解方程组,可得交点坐标.【详解】解方程组,得,所以,P(3,0)故答案为(3,0)本题考核知识点:求函数图象的交点.解题关键点:解方程组求交点坐标.三、解答题(本大题共5个小题,共48分)14、见解析.【解析】
利用根的判别式△≥1时,进行计算即可【详解】△=,所以,方程总有两个实数根.此题考查根的判别式,掌握运算法则是解题关键15、(1)甲:表示工程队工作的天数,表示工程队工作的天数;乙:表示工程队整治河道的米数,表示工程队整治河道的米数.(2)两工程队分别整治了60米和120米.【解析】
此题主要考查利用基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,运用不同设法列出不同的方程组解决实际问题.(1)此题蕴含两个基本数量关系:A工程队用的时间+B工程队用的时间=20天,A工程队整治河道的米数+B工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.【详解】试题解析:(1)甲同学:设A工程队用的时间为x天,B工程队用的时间为y天,由此列出的方程组为;乙同学:A工程队整治河道的米数为x,B工程队整治河道的米数为y,由此列出的方程组为;故答案为:A工程队用的时间,B工程队用的时间,A工程队整治河道的米数,B工程队整治河道的米数;(2)选甲同学所列方程组解答如下:,②-①×8得4x=20,解得x=5,把x=5代入①得y=15,所以方程组的解为,A工程队整治河道的米数为:12x=60,B工程队整治河道的米数为:8y=120;答:A工程队整治河道60米,B工程队整治河道120米.考点:二元一次方程组的应用.16、x1=2,x2=-1.【解析】
方程利用因式分解法求出解即可.【详解】解:分解因式得:(x-2)(x+1)=0,
可得x-2=0或x+1=0,
解得:x1=2,x2=-1.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.17、(1)见解析;(2),见解析;(3),,(元).【解析】
(1)根据已知各点坐标进而在坐标系中描出即可;(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;(3)利用利润=销量×(每件利润),进而得出答案.【详解】解:(1)如图:(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,由题提供数据可知固定k值为24,所以函数表达式为:,连线如图:(3)利润=销量×(每件利润),利润为T,销量为y,由(2)知,每件售价为1,则每件利润为x-1,所以,当最大时,最小,而此时最大,根据题意,钥匙扣售价不超过8元,所以时,(元).此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.18、(1)A(1,3),B(-3,3),C(-3,-1);(2)P的坐标(-3,1).【解析】
(1)利用正方形的性质即可解决问题;(2)根据中点坐标公式计算即可.【详解】解:(1)∵正方形ABCD的边长为4,AD∥y轴,D(1,-1).
∴A(1,3),B(-3,3),C(-3,-1),
(2)∵BP=BC=2,B(-3,3),C(-3,-1),
∴BC中点P的坐标(-3,1).点睛:本题考查正方形的性质、坐标与图形的性质、中点坐标公式等知识,解题的关键是熟练掌握点的位置与坐标的关系,记住中点坐标公式,属于基础题.一、填空题(本大题共5个小题,每小题4分,共20分)19、k<2.【解析】
由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.【详解】∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,∴k-2<0,解得k<2,故答案为k<2.此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.20、1【解析】
根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.【详解】解:∵a是方程x2-2x-1=0的一个解,
∴a2-2a=1,
则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
故答案为:1.本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.21、丙【解析】由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.故答案为丙.22、【解析】
连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.【详解】解:连接AE,
∵DE为AB的垂直平分线,
∴AE=BE,
∵在△ABC中,∠ACB=90°,AC=3,AB=5,
由勾股定理得BC=4,
设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
由勾股定理得:x2+32=(4-x)2,
解得:x=,
故答案为:.本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.23、D【解析】
根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.二、解答题(本大题共3个小题,共30分)24、(35,215)【解析】
作辅助线,构建全等三角形,证明ΔODN≅ΔCDM(AAS),得DN=DM,由中点得OD=25,根据直角三角形30度角的性质和勾股定理得:ON=5,DN=15,所以MN=EG=215,证明DF=OA=45【详解】解:过D作MN⊥OA于N,交BC的延长线于M,连接DF、EG,交于点H,∵四边形ABCO是菱形,∴BM//OA,∴∠M=∠OND=90°,∵OD=DC,∠ODN=∠MDC,∴ΔODN≅ΔCDM(AAS),∴DN=DM,∵OA=OC=45∴OD=25RtΔDON中,∴∠ODN=30°,∴ON=5,DN=∴MN=2DN=215∵四边形DEFG是菱形,∴DF⊥EG,DH=12DF∴Rt∴MG=EN,∵MG//EN,∠M=90°,∴四边形MNEG为矩形,∴EG⊥BM,EG=MN=215∵BC//OA,DF⊥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8推翻帝制 民族觉醒(教学实录)-统编版道德与法治五年级下册
- 2024年新型城镇化建设项目投资借款合同汇编3篇
- 2024年度影视作品拍摄专业聘用合同3篇
- 小学信息技术第二册 网上交流信息教学实录 北京版
- 14《圆明园的毁灭》(教学实录)2024-2025学年-统编版五年级语文上册
- 2023四年级数学上册 2 公顷和平方千米第1课时 认识公顷配套教学实录 新人教版
- 钢筋购买合同
- 2024山西房产买卖合同(含环保材料及节能标准)3篇
- 个人房屋租赁合同
- 设施齐全商铺长期租赁合同
- 《工程质量检测与评定》课程标准
- 上市公司投资报告分析报告
- 车队居间协议
- 《静女》《涉江采芙蓉》《鹊桥仙》联读教学设计2023-2024学年统编版高中语文必修上册
- 如何提高中小学生的阅读能力
- 中国风古诗词诗歌朗读比赛大会唐诗宋词含内容课件两篇
- 计算机网络技术基础(第6版)全套教学课件
- 计量经济学与Stata应用
- 湖南省岳阳市2023年八年级上学期期末质量检测数学试题附答案
- 食用菌技术员聘用合同范本
- 第三单元-设计制作-主题活动三《创意木书夹》-课件
评论
0/150
提交评论