版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高级中学名校试卷PAGEPAGE2河北省保定市六校联盟2023-2024学年高二下学期期中联考数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将〖答案〗答在答题卡上.选择题每小题选出〖答案〗后,用2B铅笔把答题卡上对应题目的〖答案〗标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的〖答案〗无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线在处的切线倾斜角是()A. B. C. D.〖答案〗D〖解析〗设曲线在处的切线倾斜角为,因为,则.所以曲线在处的切线倾斜角是,故选:D.2.某射手射击所得环数的分布列下表:已知的数学期望,则的值为()789100.10.3A. B. C. D.〖答案〗C〖解析〗的数学期望,由射手射击所得环数的分布列,得,解得,.故选:C.3.某学校安排3名教师指导4个学生社团,每名教师至少指导一个社团,每个社团只需一位指导老师,则不同的安排方式共有()A.12种 B.24种 C.36种 D.72种〖答案〗C〖解析〗4个学生社团,分为2,1,1的组,则有种分组情况,再分配给3位老师,则有种方法.故选:C4.在的展开式中,含项的系数为()A. B. C. D.〖答案〗C〖解析〗的通项为,所以,含的项为,即含项的系数为.故选:C.5.下列说法正确的是()A.若随机变量,则B.若随机变量,其中,则C.若随机变量,则越小,越大D.若随机变量,且,则〖答案〗C〖解析〗因为,则,故A错误;,故B错误;因为,所以越小,的概率曲线越集中于对称轴处,,所以越大,故C正确;根据正态分布的对称性可知,故D错误.故选:C.6.英国数学家贝叶斯在概率论研究方面成就显著,经他研究,随机事件存在如下关系:.对于一个电商平台,用户可以选择使用信用卡、支付宝或微信进行支付.已知使用信用卡支付的用户占总用户的,使用支付宝支付的用户占总用户的,其余的用户使用微信支付.平台试运营过程中发现三种支付方式都会遇到支付问题,为了优化服务,进行数据统计发现:出现支付问题的概率是0.06,若一个遇到支付问题的用户,使用三种支付方式支付的概率均为,则使用微信支付遇到支付问题的概率是()A.0.1 B.0.06 C.0.4 D.0.05〖答案〗D〖解析〗设分别表示事件使用信用卡支付、使用支付宝支付、使用微信支付,表示事件出现支付问题,则,所以使用微信支付遇到支付问题的概率,.故选:D.7.设,且随机变量的分布列是:01则的最小值为()A0 B. C. D.〖答案〗B〖解析〗由分布列得,则,当时,取得最小值.故选:B.8.已知函数,若过可做两条直线与函数的图象相切,则的取值范围为()A. B. C. D.〖答案〗B〖解析〗设过点的直线与函数的图象相切时的切点为,则,因为,所以切线方程为,又在切线上,所以,整理得,则过点的直线与函数的图象相切的切线条数即为直线与曲线的图象的公共点的个数,因为,令,得,所以,当时,单调递减;当时,单调递增;当时,单调递减,因为,当时,所以,函数的图象大致如图:所以当时,图像有两个交点,切线有两条.故选:B.二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.保定某中学上午大课间跑操,为了提升班级跑操水平,某班在跑操后进行分组训练,现六名同学一组进行队列训练,则下列说法正确的是()A.若不在第一个,则不同的排序种数有480种B.若和不相邻,则不同的站队方式共有480种C.若和相邻,且不在两端,则不同站队方式共有120种D.排在之前的概率为〖答案〗BD〖解析〗对于,若甲不排第一个,则甲有5种排法,其余5个人全排,共有种;对于,先排列除与外的4个人,有种方法,利用插空法将和插入5个空,有种方法,则共有种方法;对于,若和相邻,利用捆绑法不同站队方式有种,若和相邻且在两端,则站队方式有种,故由间接法得站队方式共有192种;对于排在之前的概率为.故选:BD.10.若,则()A.B.C.D.〖答案〗ACD〖解析〗设,对A:令,则,故A正确;对B:令,则,故B错误;对C:令,则,结合B中所求,则,解得,故C正确;对D:,令,则,故,又,故,故D正确;故选:ACD.11.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第次传球后球在甲、乙、丙手中的概率依次为,则下列结论正确的有()A. B.C. D.〖答案〗ACD〖解析〗第一次传球后到乙或丙手里,故,第二次传球,乙或丙有的概率回到甲手里,故,故A正确;第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,3次传球后球在乙手中的事件有:甲乙甲乙,甲乙丙乙,甲丙甲乙,3个结果,所以概率为,故B错误;第一次甲将球传出后,2次传球后的所有结果为:甲乙甲,甲乙丙,甲丙甲,甲丙乙共4个结果,它们等可能,2次传球后球在丙手中的事件有:甲乙丙,1个结果,所以概率是,故C正确;,即,故D正确.故选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则__________.〖答案〗〖解析〗由题意得,,所以,即,所以.故〖答案〗为:13.若随机变量,且,则__________,__________.〖答案〗①②〖解析〗因为随机变量,且,所以,解得,则.故〖答案〗为:;.14.在一个抽奖游戏中,主持人从编号为且外观相同的空箱子中随机选择一个,放入一件奖品,再将箱子关闭,也就是主持人知道奖品在哪个箱子里,当抽奖人选择了某个箱子后,在箱子打开之前,主持人先随机打开另一个没有奖品的箱子,并问抽奖人是否愿意更改选择.现在已知甲选择了1号箱,若用表示号箱有奖品,用表示主持人打开号箱子,则__________.〖答案〗〖解析〗奖品在1号箱里,主持人可打开2,3号箱,故;奖品在2号箱里,主持人打开3号箱的概率为1,故;奖品在3号箱里,主持人只能打开2号箱,故,由全概率公式可得:,.故〖答案〗为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知在的展开式中,各项系数和为81.(1)求的值;(2)求含的项的系数;(3)求展开式中二项式系数最大的项.解:(1)因为的展开式中各项系数和为81,所以令,则,解得.(2)由第项为,令,解得,所以的系数为.(3)根据二项式系数性质可知,当时,二项式系数最大,即第三项,所以展开式中二项式系数最大的项是.16.袋中有除颜色外其他都相同的7个小球,其中4个红色,3个黄色.(1)甲、乙两人依次不放回各摸一个球,求甲摸出红球,乙摸出黄球的概率;(2)甲从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时即停止摸球,记随机变量为此时已摸球的次数,求:①的值;②随机变量的分布列和数学期望.解:(1)设事件为“甲摸出红球”,事件为“乙摸出黄球”,.(2)①由已知得从袋中不放回的摸球两次的所有取法有种,事件表示第一次取红球第二次取黄球或第一次取黄球第二次取红球,故事件包含种取法,所以.②的可能取值为:,.则的概率分布为2345所以的数学期望为17.已知函数.(1)当时,求函数的图象在点处的切线方程;(2)当时,若函数在上的最小值为0,求实数的值.解:(1)当时,,定义域为,,又,所以切线方程为(或写成.(2),定义域为,,令得;①当,即时,在上单调递增,这时,不合题意,舍去;②当,即时,当单调递减单调递增,这时,解得;③当,即时,在上单调递减,这时,解得(舍去),综上:.18.学校组织一项竞赛,在初赛中有两轮答题:第一轮从类的三个问题中随机选两题作答,每答对一题得30分,答错得0分;第二轮从类的分值分别为40,70的2个问题中随机选1题作答,每答对一题得相应满分,答错得0分.若两轮总积分不低于100分,则晋级复赛.甲、乙同时参赛,在类的三个问题中,甲每个问题答对的概率均为,乙只能答对其中两个问题;在类的2个分值分别为40,70的问题中,甲答对的概率分别为,乙答对的概率分别为,甲、乙回答任一问题正确与否互不影响.设甲、乙在第一轮的得分分别为.(1)分别求的概率分布列;(2)分别计算甲、乙晋级复赛的概率.解:(1)根据题设可知:,,.所以的分布列为03060因为乙只能答对其中两道题,所以,,故的分布列为3060(2)记事件表示“甲晋级复赛”,事件表示“乙晋级复赛”,由于甲、乙回答任一问题正确与否互不影响,所以,故甲晋级复赛概率为,乙晋级复赛概率为.19.已知函数.(1)讨论函数的单调性;(2)当时,若满足,求证:;(3)若函数,当时,恒成立,求实数的取值范围.解:(1),当时,在上单调递增,当时,令,解得,单调递减,单调递增,综上:当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)由题意,则.要证,只需证,而,且函数在上单调递减,故只需证,又,所以只需证,即证,令,即,由均值不等式可得(当且仅当,即时,等号成立).所以函数在上单调递增.由,可得,即,所以,又函数在上单调递减,所以,即得证.(3)法一:,则,令,当时,,在上单调递增,且.①当时,在上单调递增,,符合题意,.②当时,又在上单调递增,且当趋近正无穷,趋近正无穷,,使得,在上单调递减,在上单调递增,而,所以不合题意.综上:实数的取值范围为.法二:,当时,恒成立,当时,由得,即,令,即,则,令,则.在上单调递增,,即上单调递增,而,所以符合洛必达法则.由洛必达法则得:实数的取值范围为.法三:,当时,恒成立,当时,由得,即,设,又,则由拉格朗日中值定理可知:令,即又,在上单调递增,,实数的取值范围为.河北省保定市六校联盟2023-2024学年高二下学期期中联考数学试题考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将〖答案〗答在答题卡上.选择题每小题选出〖答案〗后,用2B铅笔把答题卡上对应题目的〖答案〗标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的〖答案〗无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线在处的切线倾斜角是()A. B. C. D.〖答案〗D〖解析〗设曲线在处的切线倾斜角为,因为,则.所以曲线在处的切线倾斜角是,故选:D.2.某射手射击所得环数的分布列下表:已知的数学期望,则的值为()789100.10.3A. B. C. D.〖答案〗C〖解析〗的数学期望,由射手射击所得环数的分布列,得,解得,.故选:C.3.某学校安排3名教师指导4个学生社团,每名教师至少指导一个社团,每个社团只需一位指导老师,则不同的安排方式共有()A.12种 B.24种 C.36种 D.72种〖答案〗C〖解析〗4个学生社团,分为2,1,1的组,则有种分组情况,再分配给3位老师,则有种方法.故选:C4.在的展开式中,含项的系数为()A. B. C. D.〖答案〗C〖解析〗的通项为,所以,含的项为,即含项的系数为.故选:C.5.下列说法正确的是()A.若随机变量,则B.若随机变量,其中,则C.若随机变量,则越小,越大D.若随机变量,且,则〖答案〗C〖解析〗因为,则,故A错误;,故B错误;因为,所以越小,的概率曲线越集中于对称轴处,,所以越大,故C正确;根据正态分布的对称性可知,故D错误.故选:C.6.英国数学家贝叶斯在概率论研究方面成就显著,经他研究,随机事件存在如下关系:.对于一个电商平台,用户可以选择使用信用卡、支付宝或微信进行支付.已知使用信用卡支付的用户占总用户的,使用支付宝支付的用户占总用户的,其余的用户使用微信支付.平台试运营过程中发现三种支付方式都会遇到支付问题,为了优化服务,进行数据统计发现:出现支付问题的概率是0.06,若一个遇到支付问题的用户,使用三种支付方式支付的概率均为,则使用微信支付遇到支付问题的概率是()A.0.1 B.0.06 C.0.4 D.0.05〖答案〗D〖解析〗设分别表示事件使用信用卡支付、使用支付宝支付、使用微信支付,表示事件出现支付问题,则,所以使用微信支付遇到支付问题的概率,.故选:D.7.设,且随机变量的分布列是:01则的最小值为()A0 B. C. D.〖答案〗B〖解析〗由分布列得,则,当时,取得最小值.故选:B.8.已知函数,若过可做两条直线与函数的图象相切,则的取值范围为()A. B. C. D.〖答案〗B〖解析〗设过点的直线与函数的图象相切时的切点为,则,因为,所以切线方程为,又在切线上,所以,整理得,则过点的直线与函数的图象相切的切线条数即为直线与曲线的图象的公共点的个数,因为,令,得,所以,当时,单调递减;当时,单调递增;当时,单调递减,因为,当时,所以,函数的图象大致如图:所以当时,图像有两个交点,切线有两条.故选:B.二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.保定某中学上午大课间跑操,为了提升班级跑操水平,某班在跑操后进行分组训练,现六名同学一组进行队列训练,则下列说法正确的是()A.若不在第一个,则不同的排序种数有480种B.若和不相邻,则不同的站队方式共有480种C.若和相邻,且不在两端,则不同站队方式共有120种D.排在之前的概率为〖答案〗BD〖解析〗对于,若甲不排第一个,则甲有5种排法,其余5个人全排,共有种;对于,先排列除与外的4个人,有种方法,利用插空法将和插入5个空,有种方法,则共有种方法;对于,若和相邻,利用捆绑法不同站队方式有种,若和相邻且在两端,则站队方式有种,故由间接法得站队方式共有192种;对于排在之前的概率为.故选:BD.10.若,则()A.B.C.D.〖答案〗ACD〖解析〗设,对A:令,则,故A正确;对B:令,则,故B错误;对C:令,则,结合B中所求,则,解得,故C正确;对D:,令,则,故,又,故,故D正确;故选:ACD.11.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第次传球后球在甲、乙、丙手中的概率依次为,则下列结论正确的有()A. B.C. D.〖答案〗ACD〖解析〗第一次传球后到乙或丙手里,故,第二次传球,乙或丙有的概率回到甲手里,故,故A正确;第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,3次传球后球在乙手中的事件有:甲乙甲乙,甲乙丙乙,甲丙甲乙,3个结果,所以概率为,故B错误;第一次甲将球传出后,2次传球后的所有结果为:甲乙甲,甲乙丙,甲丙甲,甲丙乙共4个结果,它们等可能,2次传球后球在丙手中的事件有:甲乙丙,1个结果,所以概率是,故C正确;,即,故D正确.故选:ACD.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则__________.〖答案〗〖解析〗由题意得,,所以,即,所以.故〖答案〗为:13.若随机变量,且,则__________,__________.〖答案〗①②〖解析〗因为随机变量,且,所以,解得,则.故〖答案〗为:;.14.在一个抽奖游戏中,主持人从编号为且外观相同的空箱子中随机选择一个,放入一件奖品,再将箱子关闭,也就是主持人知道奖品在哪个箱子里,当抽奖人选择了某个箱子后,在箱子打开之前,主持人先随机打开另一个没有奖品的箱子,并问抽奖人是否愿意更改选择.现在已知甲选择了1号箱,若用表示号箱有奖品,用表示主持人打开号箱子,则__________.〖答案〗〖解析〗奖品在1号箱里,主持人可打开2,3号箱,故;奖品在2号箱里,主持人打开3号箱的概率为1,故;奖品在3号箱里,主持人只能打开2号箱,故,由全概率公式可得:,.故〖答案〗为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知在的展开式中,各项系数和为81.(1)求的值;(2)求含的项的系数;(3)求展开式中二项式系数最大的项.解:(1)因为的展开式中各项系数和为81,所以令,则,解得.(2)由第项为,令,解得,所以的系数为.(3)根据二项式系数性质可知,当时,二项式系数最大,即第三项,所以展开式中二项式系数最大的项是.16.袋中有除颜色外其他都相同的7个小球,其中4个红色,3个黄色.(1)甲、乙两人依次不放回各摸一个球,求甲摸出红球,乙摸出黄球的概率;(2)甲从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时即停止摸球,记随机变量为此时已摸球的次数,求:①的值;②随机变量的分布列和数学期望.解:(1)设事件为“甲摸出红球”,事件为“乙摸出黄球”,.(2)①由已知得从袋中不放回的摸球两次的所有取法有种,事件表示第一次取红球第二次取黄球或第一次取黄球第二次取红球,故事件包含种取法,所以.②的可能取值为:,.则的概率分布为2345所以的数学期望为17.已知函数.(1)当时,求函数的图象在点处的切线方程;(2)当时,若函数在上的最小值为0,求实数的值.解:(1)当时,,定义域为,,又,所以切线方程为(或写成.(2),定义域为,,令得;①当,即时,在上单调递增,这时,不合题意,舍去;②当,即时,当单调递减单调递增,这时,解得;③当,即时,在上单调递减,这时,解得(舍去),综上:.18.学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度卫星导航系统服务合同
- 2024天然气运输物流信息化建设合同
- 2024常见签订劳动合同陷阱
- 2024年工程项目验收与交付合同
- 2024年建筑工程混凝土专项分包协议
- 2024年度吨不锈钢带打印功能电子地磅秤技术支持合同
- 2024年大数据服务合作协议
- 2024年度环保项目工程设计与施工合同
- 2024年度电子商务平台技术支持与运营服务合同
- 2024年度水果购销合同
- 污泥( 废水)运输服务方案(技术方案)
- 公司章程范本杭州工商docx
- 职业院校面试题目及答案
- 全护筒跟进旋挖施工方案
- 海水淡化处理方案
- 初中数学基于大单元的作业设计
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
- 相邻企业间安全管理协议
- 装饰装修工程售后服务具体措施
- 乙炔发生器、电石库安全检查表
评论
0/150
提交评论