2025届江苏省沛县数学八上期末复习检测试题含解析_第1页
2025届江苏省沛县数学八上期末复习检测试题含解析_第2页
2025届江苏省沛县数学八上期末复习检测试题含解析_第3页
2025届江苏省沛县数学八上期末复习检测试题含解析_第4页
2025届江苏省沛县数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省沛县数学八上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列多项式中,不能用平方差公式分解的是()A. B.C. D.2.如图,在中,,,.沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为.则的周长是()A.15 B.12 C.9 D.63.甲、乙两名运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米;④甲、乙两名运动员相距5千米时,t=0.5或t=2或t=5.其中正确的个数有()A.1个 B.2个 C.3个 D.4个4.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.105.如图,,,,下列条件中不能判断的是()A. B. C. D.6.如果分式的值为0,则x的值是A.1 B.0 C.-1 D.±17.不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.以上皆不对8.下列条件,不能判定两个直角三角形全等的是()A.斜边和一直角边对应相等 B.两个锐角对应相等C.一锐角和斜边对应相等 D.两条直角边对应相等9.如图,在等边三角形中,、分别为、上的点,且,、相交于点,,垂足为.则的值是().A.2 B. C. D.10.下列各组线段中(单位:cm),能组成三角形的是()A.5,15,20 B.6,8,15 C.2,2.5,3 D.3,8,1511.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6 B.18 C.28 D.5012.当一个多边形的边数增加时,它的内角和与外角和的差()A.增大 B.不变 C.减小 D.以上都有可能二、填空题(每题4分,共24分)13.计算:(3×10﹣5)2÷(3×10﹣1)2=_____.14.如图,在△ABC中,AB=3,AC=4,则BC边上的中线AD的长x取值范围是___;15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…;根据以上规律,(a+b)5展开式共有六项,系数分别为______,拓展应用:(a﹣b)4=_______.16.如图,在△ABC中,∠BAC=30°,∠ACB=45°,BD∥AC,BD=AB,且C,D两点位于AB所在直线两侧,射线AD上的点E满足∠ABE=60°.(1)∠AEB=___________°;(2)图中与AC相等的线段是_____________,证明此结论只需证明△________≌△_______.17.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)18.计算3的结果是___.三、解答题(共78分)19.(8分)如图,设图中每个小正方形的边长为1,(1)请画出△ABC关于y轴对称图形△A′B′C′,其中ABC的对称点分别为A′B′C′;(2)直接写出A′、B′、C′的坐标.20.(8分)阅读下列材料,然后回答问题:阅读:在进行二次根式的化简与运算时,可以将进一步化简:方法一:方法二:(探究)选择恰当的方法计算下列各式:(1);(2).(猜想)=.21.(8分)如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.22.(10分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.23.(10分)先化简,再求值:(1﹣)÷,其中a=(3﹣π)0+()﹣1.24.(10分)如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点,点E坐标为(3,0),点C(5,0).(1)如图①,求BD的长;(2)如图②,设BD交x轴于F点,求证:∠OFA=∠DFA.25.(12分)阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.26.如图,把长方形纸片放入平面直角坐标系中,使分别落在轴的的正半轴上,连接,且,.(1)求点的坐标;(2)将纸片折叠,使点与点重合(折痕为),求折叠后纸片重叠部分的面积;(3)求所在直线的函数表达式,并求出对角线与折痕交点的坐标.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.2、B【分析】先根据勾股定理的逆定理判断△ABC是直角三角形,从而可得B、E、C三点共线,然后根据折叠的性质可得AD=ED,CA=CE,于是所求的的周长转化为求AB+BE,进而可得答案.【详解】解:在中,∵,∴是直角三角形,且∠A=90°,∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴B、E、C三点共线,AD=ED,CA=CE,∴BE=BC-CE=15-1=3,∴的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B.【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.3、B【分析】①甲的速度为1203=40,即可求解;

②t≤1时,乙的速度为501=50,t>1后,乙的速度为(120-50)(3-1)=35,即可求解;

③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;

④甲的函数表达式为:,乙的函数表达式为:时,,时,,即可求解.【详解】①甲的速度为1203=40(千米/小时),故正确;

②时,乙的速度为501=50(千米/小时),后,乙的速度为(120-50)(3-1)=35(千米/小时),故错误;

③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;

④由①②③得:甲的函数表达式为:,

乙的函数表达式为:当时,,当时,,当时,,解得(小时);当时,,解得(小时);当时,,解得(小时);∴甲、乙两名运动员相距5千米时,或或小时,故错误;

综上,①③正确,共2个,故选:B.【点睛】本题为一次函数应用题,考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程,解题的关键是:根据速度=路程÷时间求出速度;待定系数法求函数解析式;找出各线段所对应的函数表达式做差解方程.4、C【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.【详解】设第三边长为xcm,则8﹣2<x<2+8,6<x<10,故选C.【点睛】本题考查了三角形三边关系,解题的关键是根据三角形三边关系定理列出不等式,然后解不等式即可.5、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.6、A【解析】试题分析:根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选A.7、C【解析】试题解析:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选C.8、B【分析】根据直角三角形全等的判定方法:HL,SAS,ASA,AAS,SSS,做题时要结合已知条件与全等的判定方法逐一验证即可.【详解】A.符合判定HL,故此选项正确,不符合题意;B.全等三角形的判定必须有边的参与,故此选项错误,符合题意;C.符合判定AAS,故此选项正确,不符合题意;D.符合判定SAS,故此选项正确,不符合题意;故选:B.【点睛】本题考查了直角三角形全等的判定定理,熟记直角三角形的判定定理是解题的关键,注意判定全等一定有一组边对应相等的.9、A【分析】因为AG⊥CD,△AGF为直角三角形,根据三角函数证明∠GAF=30°或∠AFD=60°即可,需要证明△ADF∽△ABE,通过证明△ABE≌△CAD可以得出.【详解】∵三角形ABC是等边三角形,∴AB=CA,∠ABE=∠CAD=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS).∴∠AEB=∠CDA,又∠EAD为公共角,∴△ADF∽△ABE.∴∠AFD=∠B=60°.∵AG垂直CD,即∠AGF=90°,∴∠GAF=30°,∴AF=2FG,即.故选:A.【点睛】此题主要考查等边三角形的性质、三角形全等的判定与性质及有30°角的直角三角形的性质等知识;难度较大,有利于培养同学们钻研和探索问题的精神,证明线段是2倍关系的问题往往要用到有30°角的直角三角形的性质求解,要熟练掌握.10、C【分析】根据三角形三边长的关系:“三角形任意两边之和大于第三边”,逐一判断选项,即可得到答案.【详解】∵5+15=20,∴长为5,15,20的线段,不能组成三角形,即:A错误;∵6+8<15,∴长为6,8,15的线段,不能组成三角形,即:B错误;∵2+2.5>3,∴长为2,2.5,3的线段,能组成三角形,即:C正确;∵3+8<15,∴长为3,8,15的线段,不能组成三角形,即:D错误;故选C.【点睛】本题主要考查三角形三边关系,熟记三角形三边关系定理是解题的关键.11、B【分析】先提取公因式ab,再利用完全平方公式因式分解,最后代入已知等式即可得答案.【详解】a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2∵a+b=3,ab=2,∴原式=2×33=18,故选B.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n-2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n-2)-360=180n-720∵180>0∴多边形的内角和与外角和的差会随着n的增大而增大故选A.【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.二、填空题(每题4分,共24分)13、.【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.14、0.1<x<3.1【解析】延长AD到E,使AD=DE,连接BE,∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴EB=AC=4,∵AB=3,∴1<AE<7,∴0.1<AD<3.1.故答案为0.1<AD<3.1.15、1,5,10,10,5,1a4﹣4a3b+6a2b2﹣4ab3+b4【分析】经过观察发现,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和,展开式的项数比它的指数多1.根据上面观察的规律很容易解答问题.【详解】(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1、5、10、10、5、1,a4﹣4a3b+6a2b2﹣4ab3+b4.【点睛】此题考查完全平方公式,正确观察已知的式子与对应的三角形之间的关系是关键.16、45BEABCBDE【分析】(1)由平行线和等腰三角形的性质得出∠BDA=∠BAD=75°,求出∠DBE=∠ABE-∠ABD=30°,由三角形的外角性质即可得出答案;(2)证出△ABC≌△BDE(AAS),得出AC=BE;即可得出答案.【详解】解:(1)∵BD∥AC,∴∠ABD=∠BAC=30°,∵BD=AB,∴∠BDA=∠BAD=(180°-30°)=75°,∵∠ABE=60°,∴∠DBE=∠ABE-∠ABD=30°,∴∠AEB=∠ADB-∠DBE=75°-30°=45°;故答案为:45°;(2)在△ABC和△BDE中,∴△ABC≌△BDE(AAS),∴AC=BE;故答案为:BE,ABC,BDE.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形的外角性质等知识;熟练掌握全等三角形的判定和等腰三角形的性质是解题的关键.17、>【解析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.18、.【分析】首先化简二次根式进而计算得出答案.【详解】原式=32.故答案为.【点睛】本题考查了二次根式的加减,正确化简二次根式是解题关键.三、解答题(共78分)19、(1)图见解析;(2)A′(1,3),点B′(2,1),点C′(-2,-2);【详解】解:(1)如图所示:

(2)A′、B′、C′的坐标分别为:A′(1,3

),B′(

2,1),C′(-2,-2

).20、(1)(2)(3).【分析】(1)利用分母有理化计算;(2)先分别分母有理化,然后合并即可;(3)猜想部分与(2)计算一样,利用规律即可求解.【详解】(1)(2)==(3)猜想:原式====.故答案为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.21、(1)y=﹣x+2;(2)△AOD为直角三角形,理由见解析;(3)t=或.【分析】(1)将点A、B的坐标代入一次函数表达式:y=kx+b,即可求解;(2)由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,即可求解;(3)点C(,1),∠DBO=30°,则∠ODA=60°,则∠DOA=30°,故点C(,1),则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=2﹣t.①当OP=OM时,OQ=QH+OH,即(2﹣t)+(2﹣t)=t,即可求解;②当MO=MP时,∠OQP=90°,故OQ=OP,即可求解;③当PO=PM时,故这种情况不存在.【详解】解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、O、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是AB的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,故这种情况不存在;综上,t=或.【点睛】本题考查等腰三角形的性质、一次函数解析式、勾股定理、含30°的角的直角三角形的性质等知识点,还利用了方程和分类讨论的思想,综合性较强,难度较大,解题的关键是学会综合运用性质进行推理和计算.22、(1)-27a10;(2),【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式==-27a11÷a=-27a10;(2)原式=[4m2-n2+(m2+2mn+n2)-(4m2-2mn)]÷(-4m)=(4m2-n2+m2+2mn+n2-4m2+2mn)÷(-4m)=(m2+4mn)÷(-4m)=当m=1,n=时,原式==.【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键23、【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=当a=1+4=5时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式运算法则.24、(1)BD=5;(2)证明见解析.【分析】(1)先由等边三角形的性质得出OA=AB,AC=AD,∠OAB=∠CAD=60°进而得出∠OAC=∠BAD,即可判断出△AOC≌△ABD即可得出结论;(2)借助(1)得出的△AOC≌△ABD,得出∠ABD=∠AOC=30°,进而求出∠BFO=60°,再判断出,△AOF≌△BOF即可求出∠OFA=∠DFA=60°.【详解】(1)∵点C(5,0).∴OC=5,∵△AOB和△ACD是等边三角形,∴OA=AB,AC=AD,∠OAB=∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴BD=OC=5;(2)∵△AOB是等边三角形,且AB⊥x轴于E点,∴∠AOE=∠BOE=30°,由(1)知,△AOC≌△ABD,∴∠ABD=∠AOC=30°,∴∠BFO=90°-∠ABD=60°,在△AOF和△BOF中,,∴△AOF≌△BOF,∴∠AFO=∠BFO=60°,根据平角的定义得,∠DFA=180°-∠AFO-∠BFO=60°,∴∠OFA=∠DFA.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键,是一道简单的基础题.25、(1)证明见解析(2)证明见解析【解析】1)根据以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,OP是∠MON的平分线,运用SAS判定△AOB≌△AOC即可;

(2)先截取CE=CA,连接DE,根据SAS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论