版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届青海省西宁市第二十一中学数学八年级第一学期期末综合测试试题合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为()A. B. C. D.2.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.103.已知是完全平方式,则的值是()A.5 B. C. D.4.下列运算中正确的是()A. B. C. D.5.如图,是矩形对角线的中点,是的中点,若,则的长为()A.3 B.4 C.5 D.66.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离(米)与离家时间(分钟)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分钟;(2)学校离家的距离为4000米;(3)到达学校时共用时间为20分钟;(4)自行车发生故障时离家距离为2000米.A.1个 B.2个 C.3个 D.4个7.已知等腰三角形的一个外角等于,则它的顶角是()A. B. C.或 D.或8.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B.2 C. D.9.如果与是同类项,则()A. B. C. D.10.如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC的长为()A.2 B. C.4 D.11.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm12.估计的运算结果应在()A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间二、填空题(每题4分,共24分)13.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF=___________.14.如果正比例函数的图像经过点,,那么y随x的增大而______.15.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.16.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=°17.若关于的分式方程的解是负数,则m的取值范围是_________________.18.已知正数x的两个不同的平方根是2a﹣3和5﹣a,则x的值为______.三、解答题(共78分)19.(8分)如图1,直线分别与轴、轴交于、两点,平分交于点,点为线段上一点,过点作交轴于点,已知,,且满足.(1)求两点的坐标;(2)若点为中点,延长交轴于点,在的延长线上取点,使,连接.①与轴的位置关系怎样?说明理由;②求的长;(3)如图2,若点的坐标为,是轴的正半轴上一动点,是直线上一点,且的坐标为,是否存在点使为等腰直角三角形?若存在,求出点的坐标;若不存在,说明理由.20.(8分)如图,已知E、F在AC上,AD//CB,且,.求证:(1)(2).21.(8分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,5),B(﹣3,2),C(﹣1,1),直线L过点(1,0)且与y轴平行.(1)作出△ABC关于直线L的对称图形△A′B′C′;(2)分别写出点A′,B′,C′的坐标.22.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A,x轴上有一点P(a,0).(1)求点A的坐标;(2)若△OAP为等腰三角形,则a=;(3)过点P作x轴的垂线(垂线位于点A的右侧)、分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.23.(10分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班1009811089103500乙班891009511997500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(10分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?25.(12分)八年级(1)班从学校出发去某景点旅游,全班分成甲、乙两组,甲组乘坐大型客车,乙组乘坐小型客车.已知甲组比乙组先出发,汽车行驶的路程(单位:)和行驶时间(单位:)之间的函数关系如图所示.根据图象信息,回答下列问题:(1)学校到景点的路程为_,甲组比乙组先出发,组先到达旅游景点;(2)求乙组乘坐的小型客车的平均速度;(3)从图象中你还能获得哪些信息?(请写出一条)26.如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.2、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.3、D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项确定m的值.【详解】解:∵∴my=±2•y•5,∴m=±10,故选:D.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4、D【分析】直接利用合并同类项法则,同底数幂的乘法运算法则和积的乘方运算法则分别计算得出答案.【详解】A、,故此选项错误;B、a5+a5=2a5,故此选项错误;C、(−3a3)2=9a6,故此选项错误;D、(a3)2a=a7,故此选项正确;故选:D.【点睛】此题考查合并同类项,同底数幂的乘法,幂的乘方与积的乘方,解题关键在于掌握运算法则.5、A【分析】首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=BD=2OB=10,∴CD=AB=,∵M是AD的中点,∴OM=CD=1.故选:A.【点睛】此题考查了矩形的性质、勾股定理以及三角形中位线的性质,利用勾股定理求得AB的长是解题关键.6、C【分析】(1)根据图象中平行于x轴的那一段的时间即可得出答案;(2)根据图象的纵轴的最大值即可得出答案;(3)根据图象的横轴的最大值即可得出答案;(4)根据图象中10分钟时对应的纵坐标即可判断此时的离家距离.【详解】(1)根据图象可知平行于x轴的那一段的时间为15-10=5(分钟),所以修车时间为5分钟,故错误;(2)根据图象的纵轴的最大值可知学校离家的距离为4000米,故正确;(3)根据图象的横轴的最大值可知到达学校时共用时间为20分钟,故正确;(4)根据图象中10分钟时对应的纵坐标为2000,所以自行车发生故障时离家距离为2000米,故正确;所以正确的有3个.故选:C.【点睛】本题主要考查一次函数的应用,读懂函数的图象是解题的关键.7、D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°,∴它的顶角是:或.故选D.【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键.8、A【解析】∵△ABC是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB,又∵AD=BE,∴AB-AD=BC-BE,即BD=CE,∴△ACE≌△CBD,∴∠CAE=∠BCD,又∵∠AFG=∠ACF+∠CAE,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG⊥CD于点G,∴∠AGF=90°,∴∠FAG=30°,∴FG=AF,∴.故选A.9、C【分析】根据同类项的定义:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,列出二元一次方程组,即可得出的值.【详解】由题意,得解得故选:C.【点睛】此题主要考查对同类项的理解,熟练掌握,即可解题.10、C【详解】解:∵∠B=60°,DE⊥BC,
∴BD=2BE=2,
∵D为AB边的中点,
∴AB=2BD=4,
∵∠B=∠C=60°,
∴△ABC为等边三角形,
∴AC=AB=4,
故选:C.11、C【解析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【点睛】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.12、C【分析】先根据实数的混合运算化简,再估算的值即可.【详解】==.∵5<<6,∴7<<8故的运算结果应在7和8之间.故选:C.【点睛】本题考查了估算无理数的大小,其常见的思维方法:用有理数逼近无理数,求无理数的近似值.二、填空题(每题4分,共24分)13、48°.【解析】解:∵BD平分∠ABC,∠ABD=24°,∴∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°.∵∠A=60°,∴∠ACB=180°﹣∠A﹣∠ACB=180°﹣60°﹣48°=72°.∵FE是BC的中垂线,∴FB=FC,∴∠FCB=∠DBC=24°,∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°.故答案为48°.点睛:本题考查了三角形内角和定理,线段垂直平分线性质,角平分线定义,等腰三角形性质的应用,能熟记知识点是解此题的关键,题目比较好,难度适中.14、减小【分析】求出k的值,根据k的符号确定正比例函数的增减性.【详解】解:∵正比例函数的图像经过点,,∴-2k=6,∴k=-3,∴y随x的增大而减小.故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k的值是解题关键.15、2【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【详解】解:∴对222只需进行2次操作后变为2,故答案为:2.【点睛】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.16、15【解析】解:∵AD是等边△ABC的中线,,,,,,17、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),
解得,
∵,
∴,
解得,
又,
∴,
∴,
即且.
故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.18、49【解析】因为一个正数的平方根有两个,它们互为相反数,所以2a﹣3+5﹣a=0,解得:a=﹣2,所以2a﹣3=﹣7,因为﹣7是正数x的一个平方根,所以x的值是49,故答案为:49.三、解答题(共78分)19、(1)点A的坐标为(3,0),点B的坐标为(0,6);(2)①BG⊥y轴,理由见解析;②;(3)存在,点E的坐标为(0,4)【分析】(1)根据平方和绝对值的非负性即可求出m和n的值,从而求出点A、B的坐标;(2)①利用SAS即可证出△BDG≌△ADF,从而得出∠G=∠AFD,根据平行线的判定可得BG∥AF,从而得出∠GBO=90°,即可得出结论;②过点D作DM⊥x轴于M,根据平面直角坐标系中线段的中点公式即可求出点D的坐标,从而求出OM=,DM=3,根据角平分线的定义可得∠COA=45°,再根据平行线的性质和等腰三角形的判定可得△FMD为等腰三角形,FM=DM=3,从而求出点F的坐标;(3)过点F作FG⊥y轴于G,过点P作PH⊥y轴于H,利用AAS证出△GFE≌△HEP,从而得出FG=EH,GE=PH,然后根据点F和点P的坐标即可求出OE的长,从而求出点E的坐标.【详解】解:(1)∵,∴解得:∴AO=3,BO=6∴点A的坐标为(3,0),点B的坐标为(0,6);(2)①BG⊥y轴,理由如下∵点为中点∴BD=AD在△BDG和△ADF中∴△BDG≌△ADF∴∠G=∠AFD∴BG∥AF∴∠GBO=180°-∠AOB=90°∴BG⊥y轴;②过点D作DM⊥x轴于M∵点为中点∴点D的坐标为()=()∴OM=,DM=3∵平分∴∠COA=∵∴∠MFD=∠COA=45°∴△FMD为等腰三角形,FM=DM=3∴OF=FM-OM=;(3)存在,过点F作FG⊥y轴于G,过点P作PH⊥y轴于H若为等腰直角三角形,必有EF=PE,∠FEP=90°∴∠GFE+∠GEF=90°,∠HEP+∠GEF=90°∴∠GFE=∠HEP在△GFE和△HEP中∴△GFE≌△HEP∴FG=EH,GE=PH∵点的坐标为,点的坐标为∴OG=10,PH=6∴GE=6∴OE=OG-GE=4∴点E的坐标为(0,4).【点睛】此题考查的是非负性的应用、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标的求法,掌握平方和绝对值的非负性、构造全等三角形的方法、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标公式是解决此题的关键.20、(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可得∠A=∠C,然后利用ASA即可得出结论;(2)根据全等三角形的性质可得AF=CE,然后根据等式的基本性质即可证出结论.【详解】证明:(1)∵AD∥CB,∴∠A=∠C,∵∠D=∠B,AD=BC∴(ASA),(2)∵∴AF=CE∴AF+FE=CE+FE即AE=CF.【点睛】此题考查的是平行线的性质和全等三角形的判定及性质,掌握利用ASA判定两个三角形全等是解决此题的关键.21、(1)△A′B′C′如图所示.见解析;(2)A′(4,5),B′(5,2),C′(3,1).【分析】(1)先分别作出A,B,C的对应点A′,B′,C′,再顺次连接即可.(2)根据A′,B′,C′的位置写出坐标即可.【详解】(1)△A′B′C′如图所示.(2)∵A(﹣2,5),B(﹣3,2),C(﹣1,1),∴它们关于直线l的对称点的坐标分别为:A′(4,5),B′(5,2),C′(3,1).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.22、(1)A(4,3);(2)±5或8或;(3)1【分析】(1)点A是两直线的交点,其坐标即方程组的解;(2)分OA=PO、OA=AP、AP=OP适中情况,分别求解即可;(3)P(a,0),则分别用含a的式子表示出B、C的坐标,从而表示出BC的长度,用勾股定理求得OA,然后根据BC=OA求出a的值,从而利用三角形面积公式求解.【详解】解:(1)由题意:解得:,故点A(4,3);(2)点A(4,3),则OA=,①当OA=PO=P1O时,此时OA=5=PO=P1O,即a=±5②当OA=AP时,如图,过点A做AM⊥x轴于点M此时OM=MP=4∴OP=8则点P(8,0),即a=8;③当AP=OP时,如图所示,连接AP,过点A作AH⊥x轴于点H,AP=PO=a,则PH=4﹣a,则(4﹣a)2+9=a2,解得:a=;综上,a=±5或8或;故答案为:±5或8或;(3)∵P(a,0),则点B、C的坐标分别为:(a,a)、(a,﹣a+7),∴BC=a-(-a+7)=a+a﹣7=又∵BC=OA且OA=∴=×5=7,解得:a=8,故点P(8,0),即OP=8;△OBC的面积=×BC×OP=×7×8=1.【点睛】本题考查的是一次函数综合运用,涉及到等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.23、(1)60%;40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97;(3)46.8;103.2;(4)应把冠军奖状给甲班.【分析】(1)确定两个班级优秀的人数,利用优秀率计算公式即可得到答案;(2)将两个班级的成绩由低到高重新排列,中间的数即为中位数;(3)根据方差公式计算即可;(4)将优秀率、中位数、方差进行比较即可得到答案.【详解】(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%;(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.=[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;=[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.【点睛】此题考查数据的分析,正确掌握优秀率、方差的计算公式,并熟练运用解题是关键.24、(1)A,B单价分别是360元,540元;(2)34件.【分析】(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据“B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件”,即可得出关于x,y的分式方程,解之即可得出结论;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设A种型号健身器材的单价为x元/套,B种型号健身器材的单价为1.5x元/套,根据题意,可得:,解得:x=360,经检验x=360是原方程的根,1.5×360=540(元),因此,A,B两种健身器材的单价分别是360元,540元;(2)设购买A种型号健身器材m套,则购买B种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m≥,因此,A种型号健身器材至少购买34套.【点睛】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.25、(1)55km,20min,乙;(2);(3)甲组在第30分钟时,停了几分钟,然后又继续行驶(答案不唯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医用消毒设备能效与环保性能考核试卷
- 2025年银行个人住房贷款抵押合同房屋价值评估与抵押权设立
- 光电子器件数据传输技术考核试卷
- 2025年度工业设计师保密协议合同
- 2025年度砖厂承包与绿色建筑标准推广合同
- 卫生洁具行业供应链优化与零售商采购策略优化考核试卷
- 塑料制品行业的创新与创业机会考核试卷
- 印刷业国际合作机遇与风险控制策略考核试卷
- 丝印精加工在微型电子设备领域的应用考核试卷
- 2025-2030全球精密研磨虎钳行业调研及趋势分析报告
- 无人机航拍技术教案(完整版)
- 人教PEP版(2024)三年级上册英语Unit 4《Plants around us》单元作业设计
- 《保密法》培训课件
- 医院项目竣工验收和工程收尾阶段的管理措施专项方案
- 2024年涉密人员考试试题库保密基本知识试题附答案(考试直接用)
- 2024年桂林中考物理试卷
- DL∕T 5362-2018 水工沥青混凝土试验规程
- (正式版)JC∕T 60023-2024 石膏条板应用技术规程
- DL-T5054-2016火力发电厂汽水管道设计规范
- (权变)领导行为理论
- 家用电器可靠性与寿命预测研究
评论
0/150
提交评论