2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题含解析_第1页
2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题含解析_第2页
2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题含解析_第3页
2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题含解析_第4页
2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省漯河市召陵区数学八年级第一学期期末达标检测试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在等边三角形ABC中,点E为AC边上的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值是为()A.3 B.4 C.6 D.102.化简的结果是()A. B. C. D.3.已知等腰三角形的一个外角等于,则它的顶角是()A. B. C.或 D.或4.下列各式中,相等关系一定成立的是()A.B.C.D.5.如图,在中,点为的中点,平分,且于点,延长交于点.若,,则的长为()A.5 B.6 C.7 D.86.满足的整数是()A.-1,0,1,2 B.-2,-1,0,1 C.-1,1,2,3 D.0,1,2,37.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正确的个数有()个.A.4 B.3 C.2 D.18.下列因式分解正确的是()A.x2+xy+x=x(x+y) B.x2﹣4x+4=(x+2)(x﹣2)C.a2﹣2a+2=(a﹣1)2+1 D.x2﹣6x+5=(x﹣5)(x﹣1)9.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.1410.如图,在中,点是边上任一点,点分别是的中点,连结,若的面积为,则的面积为()A. B. C. D.11.如图,将两个全等的直角三角尺ABC和ADE如图摆放,∠CAB=∠DAE=90°,∠ACB=∠DEA=30°,使点D落在BC边上,连结EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ACE为等边三角形.其中正确的是()A.①②③ B.①②④ C.②③④ D.①②③④12.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.14.若x,y都是实数,且,则x+3y=_____.15.函数y=自变量x的取值范围是__.16.如图所示的坐标系中,单位长度为1,点B的坐标为(1,3),四边形ABCD的各个顶点都在格点上,点P也在格点上,的面积与四边形ABCD的面积相等,写出所有点P的坐标_____________.(不超出格子的范围)17.已知,则代数式______.18.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_______.三、解答题(共78分)19.(8分)某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为W(元),求W与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元?20.(8分)(1)因式分解:(2)先化简,再求值:,其中21.(8分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.22.(10分)自2019年11月20日零时起,大西高铁车站开始试点电子客票业务,旅客购票乘车更加便捷.大西高铁客运专线是国家《中长期铁路网规划》中的重要组成部分,它的建成将意味着今后山西人去西安旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车.已知高铁线路中从A地到某市的高铁行驶路程是400km,普通列车的行驶路程是高铁行驶路程的1.3倍,若高铁的平均速度(km/h)是普通列车平均速度(km/h)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h,求普通列车和高铁的平均速度.23.(10分)如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.24.(10分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.25.(12分)如图,直角坐标系中,一次函数的图像分别与、轴交于两点,正比例函数的图像与交于点.(1)求的值及的解析式;(2)求的值;(3)在坐标轴上找一点,使以为腰的为等腰三角形,请直接写出点的坐标.26.已知:如图,,求证:.

参考答案一、选择题(每题4分,共48分)1、A【分析】先连接PB,再根据PB=PC,将EP+CP转化为EP+BP,最后根据两点之间线段最短,求得BE的长,即为EP+CP的最小值.【详解】连接PB,如图所示:∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴PB=PC,当B、P、E三点共线时,EP+CP=EP+PB=BE,∵等边△ABC中,E是AC边的中点,∴AD=BE=3,∴EP+CP的最小值为3,故选:A.【点睛】本题主要考查了等边三角形的轴对称性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.2、D【分析】根据分式的除法法则,即可得到答案.【详解】原式====,故选D.【点睛】本题主要考查分式的除法法则,掌握分式的约分,是解题的关键.3、D【分析】根据等腰三角形的性质定理与三角形的内角和定理,分两种情况:①若等腰三角形顶角的外角等于110°,②若等腰三角形底角的外角等于110°,分别求出答案即可.【详解】①若等腰三角形顶角的外角等于110°,则它的顶角是:180°-110°=70°,②若等腰三角形底角的外角等于110°,则它的顶角是:180°-2×(180°-110°)=40°,∴它的顶角是:或.故选D.【点睛】本题主要考查等腰三角形的性质定理与三角形的内角和定理,掌握等腰三角形的性质定理是解题的关键.4、A【分析】用平方差公式和完全平方公式分别计算,逐项判断即可.【详解】解:A.,故A正确;B.应为,故B错误;C.应为,故C错误;D.应为,故D错误.故选A.【点睛】本题考查平方差公式及完全平方公式的计算.5、B【分析】根据平分,且可得△ADB≌△ADN,得到BD=DN,AN=AB=4,根据三角形中位线定理求出NC,计算即可.【详解】解:∵平分,且∴,在△ADB和△ADN中,∴△ADB≌△ADN(ASA)

∴BD=DN,AN=AB=4,

∵点为的中点,

∴NC=2DM=2,

∴AC=AN+NC=6,

故选B.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.6、A【解析】因为−≈−1.414,≈2.236,所以满足−<x<的整数x是−1,0,1,2.故选A.7、B【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,利用“边角边”证明△ABE和△CAD全等,然后分析判断各选项即可.【详解】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°−∠BPQ=90°−60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选B.【点睛】此题考查全等三角形的判定与性质,等边三角形的性质,解题关键在于掌握各性质定义.8、D【分析】各项分解得到结果,即可作出判断.【详解】A、原式=x(x+y+1),不符合题意;B、原式=(x﹣2)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣5)(x﹣1),符合题意,故选:D.【点睛】本题考查了因式分解的应用,掌握因式分解的概念以及应用是解题的关键.9、B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.10、C【分析】根据三角形中线及中位线的性质即可得到三角形面积之间的关系,进而由的面积即可得到的面积.【详解】∵G,E分别是FB,FC中点∴,∴∵∴∵F是AD中点∴,∵,∴∴,故选:C.【点睛】本题主要考查了三角形面积与中位线和中线的关系,熟练掌握相关性质定理是解决本题的关键.11、B【分析】先利用旋转的性质得到AB=AC,AC=AE,则可判断△ABD为等边三角形,所以∠BAD=∠ADB=60°,则∠EAC=∠BAD=60°,再计算出∠DAC=30°,于是可对①进行判断;接着证明△AEC为等边三角形得到EA=EC,得出④正确,加上DA=DC,则根据线段垂直平分线的判定方法可对②进行判断;然后根据平行线和等腰三角形的性质,则可对③进行判断;即可得出结论.【详解】解:在Rt△ABC中,∵∠ACB=30°,∴∠ABC=60°,∵△ABC≌△ADE,∴AB=AD,AC=AE,∴△ABD为等边三角形,∴∠BAD=∠ADB=60°,∵∠CAB=∠DAE=90°,∴∠EAC=∠BAD=60°,∵∠BAC=90°,∴∠DAC=30°=∠ACB,∴∠DAC=∠DCA,①正确;∵AC=AE,∠EAC=60°,∴△ACE为等边三角形,④正确;∴EA=EC,而DA=DC,∴ED为AC的垂直平分线,②正确;∴DE⊥AC,∵AB⊥AC,∴AB∥DE,∴∠ABE=∠BED,∵AB≠AE,∴∠ABE≠∠AEB,∴∠AEB≠∠BED,∴EB平分∠AED不正确,故③错误;故选:B.【点睛】本题是三角形的综合题,主要考查了全等三角形的性质、等边三角形的判定与性质、线段垂直平分线的判定与性质等,熟练掌握等边三角形的判定与性质是解题的关键.12、C【解析】试题分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选C.考点:因式分解的意义.二、填空题(每题4分,共24分)13、1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.14、1【分析】根据被开方数是非负数,可得答案.【详解】由题意,得x−3≥0且3−x≥0,解得x=3,y=8,x+3y=3+3×8=1,故答案为:1.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.15、【分析】根据二次根式有意义的条件:被开方数大于等于0即可确定a的取值范围.【详解】∵二次根式有意义,,解得,故答案为:.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.16、(0,4),(1,2),(2,0),(4,4)【分析】算出四边形ABCD的面积等于△ABC面积与△ACD面积之和即为2,同时矩形AEDC面积也为2,且E为AP1的中点,由中线平分所在三角形面积即为所求.【详解】解:∵,又,∴,又E为AP1的中点,∴DE平分△ADP1的面积,且△AED面积为1,∴△ADP1面积为2,故P1点即为所求,且P1(4,4),同理C为DP3的中点,AC平分△ADP3面积,且△ACD面积为1,故△ADP3面积为2,故P3点即为所求,且P3(1,2),由两平行线之间同底的三角形面积相等可知,过P3作AD的平行线与网格的交点P2和P4也为所求,故P2(0,4),P4(2,0),故答案为:P(0,4),(1,2),(2,0),(4,4).【点睛】考查了三角形的面积,坐标与图形性质,关键是熟练掌握中线平分所在三角形的面积,两平行线之间同底的三角形面积相等这些知识点.17、1【分析】x2-1=x,则x2-x=1,x3-x2=x,x3-2x2+2020=x3-x2-x2+2020,即可求解.【详解】x2-1=x,则x2-x=1,

x3-x2=x,

x3-2x2+2020=x3-x2-x2+2020=x-x2+2020=-1+2020=1,

故答案为1.【点睛】此题考查分解因式的实际运用,解题的关键是由x2-x=1推出x3-x2=x.18、(﹣1,0)【详解】解:由三角形两边之差小于第三边可知,当A、B、P三点不共线时,由三角形三边关系|PA﹣PB|<AB;当A、B、P三点共线时,∵A(0,1),B(1,2)两点都在x轴同侧,∴|PA﹣PB|=AB.∴|PA﹣PB|≤AB.∴本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得.∴直线AB的解析式为y=x+1.令y=0,得0=x+1,解得x=﹣1.∴点P的坐标是(﹣1,0).故答案为:(﹣1,0).三、解答题(共78分)19、(1);(2)日销售利润不超过1040元的天数共有18天;(3)第5天的日销售利润最大,最大日销售利润是880元.【分析】(1)这是一个分段函数,利用待定系数法求y与x之间的函数表达式,并确定x的取值范围;

(2)根据利润=(售价-成本)×日销售量可得w与x之间的函数表达式,并分别根据分段函数计算日销售利润不超过1040元对应的x的值;

(3)分别根据5≤x≤10和10<x≤17两个范围的最大日销售利润,对比可得结论.【详解】(1)设线段AB段所表示的函数关系式为y=ax+b(1≤x≤10);BC段表示的函数关系式为y=mx+n(10<x≤30),把(1,300)、(10,120)带入y=ax+b中得,解得,∴线段AB表示的函数关系式为y=-20x+320(1≤x≤10);把(10,120),(30,400)代入y=mx+n中得,解得,∴线段BC表示的函数关系式为y=14x-20(10<x≤30),综上所述.(2)由题意可知单件商品的利润为10-6=4(元/件),∴当1≤x≤10时,w=4×(-20x+320)=-80x+1280;当10<x≤30时,w=4×(14x-20)=56x-80,∴,日销售利润不超过1040元,即w≤1040,∴当1≤x≤10时,w=-80x+1280≤1040,解得x≥3;当10<x≤30时,w=56x-80≤1040,解得x≤20,∴3≤x≤20,∴日销售利润不超过1040元的天数共有18天.(3)当5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.【点睛】本题考查应用题解方程,解题的关键是读懂题意.20、(1);(2),【分析】(1)先利用平方差公式进行因式分解,然后再利用完全平方公式因式分解,即可得到答案;(2)先把分式进行化简,然后把m的值代入计算,即可得到答案.【详解】解:(1)==;(2)∵,∴===;把代入,得原式=;【点睛】本题考查了因式分解,分式的混合运算,分式的化简求值,完全平方公式和平方差公式的运用,解题的关键是熟练掌握运算法则,正确的进行因式分解,正确的进行化简.21、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【点睛】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解决此题的关键.22、普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【分析】由高铁行驶路程×1.3即可求出普通列车的行驶路程;设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,根据乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h列出分式方程即可求解。【详解】解:普通列车的行驶路程为:400×1.3=520(km).设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,则根据题意得:,解得x=100,经检验,x=100是原分式方程的解,且符合题意.则高铁的平均速度是100×2.5=250(km/h).答:普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【点睛】本题主要考查分式方程的应用,解题的关键是正确解读题意,设出未知数,根据等量关系列出分式方程.23、(1)证明见解析(2)48°【解析】(1)根据等腰三角形的性质得到∠CAD=∠CDA,根据角平分线的定义得到∠EAD=∠BAD,于是得到结论;(2)设∠DAB=x,得到∠C=3x,根据角平分线的定义得到∠EAB=2∠DAB=2x,求得∠CAB=∠CAE+∠EAB=50°+2x,根据三角形的内角和即可得到结论.【详解】(1)∵CA=CD,∴∠CAD=∠CDA,∵AD平分∠BAE,∴∠EAD=∠BAD,∵∠B=∠CDA﹣∠BAD,∠CAE=∠CAD﹣∠DAE,∴∠CAE=∠B;(2)设∠DAB=x,∵∠C=∠3∠DAB,∴∠C=3x,∵∠CAE=∠B,∠B=50°,∴∠CAE=50°,∵AD平分∠BAE,∴∠EAB=2∠DAB=2x,∴∠CAB=∠CAE+∠EAB=50°+2x,∵∠CAB+∠B+∠C=180°,∴50°+2x+50°+3x=180°,∴x=16°,∴∠C=3×16°=48°.【点睛】本题考查了等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.24、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论