2025届浙江省衢州市江山市数学八年级第一学期期末考试试题含解析_第1页
2025届浙江省衢州市江山市数学八年级第一学期期末考试试题含解析_第2页
2025届浙江省衢州市江山市数学八年级第一学期期末考试试题含解析_第3页
2025届浙江省衢州市江山市数学八年级第一学期期末考试试题含解析_第4页
2025届浙江省衢州市江山市数学八年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省衢州市江山市数学八年级第一学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+1图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定2.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80° B.70° C.60° D.50°3.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80° B.70° C.60° D.45°4.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36° B.45° C.135° D.144°5.如图,菱形的对角线长分别为,则这个菱形面积为()A. B. C. D.6.已知一次函数的图象如图所示,则一次函数的图象大致是()A. B. C. D.7.周长38的三角形纸片(如图甲),,将纸片按图中方式折叠,使点与点重合,折痕为(如图乙),若的周长为25,则的长为()A.10 B.12 C.15 D.138.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A. B.5 C.6 D.89.点P的坐标为(﹣1,2),则点P位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,在中,尺规作图如下:在射线、上,分别截取、,使;分别以点和点为圆心、大于的长为半径作弧,两弧相交于点;作射线,连结、.下列结论不一定成立的是()A. B. C. D.11.下列因式分解错误的是()A. B.C. D.12.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B. C. D.二、填空题(每题4分,共24分)13.四边形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为_______14.化简的结果是__________.15.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____16.已知等腰三角形的两边长满足方程组,则此等腰三角形的周长为_____.17.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为_____18.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.三、解答题(共78分)19.(8分)如图,在中,,点是边上的中点,、分别垂直、于点和.求证:20.(8分)(1)因式分解:(2)先化简,再求值:,其中21.(8分)如图,中,,点D为边AC上一点,于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若,求的大小;22.(10分)为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题:(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?23.(10分)化简:,请选择一个绝对值不大于2的整数,作为的值代入并求值.24.(10分)解一元一次不等式组:.25.(12分)先化简,再求代数式的值,其中.26.如图,Rt△ABC的顶点都在正方形网格的格点上,且直角顶点A的坐标是(﹣2,3),请根据条件建立直角坐标系,并写出点B,C的坐标.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据一次函数当k<0时,y随x的增大而减小解答.【详解】∵k=﹣2<0,∴y随x的增大而减小.∵﹣2<1,∴a>b.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.2、A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3、B【解析】连接AE.根据ASA可证△ADE≌△CBA,根据全等三角形的性质可得AE=AC,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE是等边三角形,根据等腰三角形的判定可得△DCE是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.【详解】如图所示,连接AE.∵AB=DE,AD=BC∵DE∥BC,∴∠ADE=∠B,可得AE=DE∵AB=AC,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE与△CBA中,,∴△ADE≌△CBA(ASA),∴AE=AC,∠AED=∠BAC=20°,∵∠CAE=∠DAE-∠BAC=80°-20°=60°,∴△ACE是等边三角形,∴CE=AC=AE=DE,∠AEC=∠ACE=60°,∴△DCE是等腰三角形,∴∠CDE=∠DCE,∴∠DEC=∠AEC-∠AED=40°,∴∠DCE=∠CDE=(180-40°)÷2=70°.故选B.【点睛】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.4、D【分析】一个外角与其相邻的内角和是180°,设内角为x,根据题意列方程4x+x=180°,求解即可.【详解】设内角为x,则4x+x=180°,解得x=36°,所以外角=4x=436°=144°,故选D.【点睛】本题考查了三角形的外角和内角和,根据题意列出方程是解题的关键.5、A【解析】直接根据菱形的面积等于它的两条对角线的乘积的一半求出答案即可.【详解】∵AC=5cm,BD=8cm,∴菱形的面积=×5×8=10cm1.故选:A.【点睛】本题考查了菱形的性质,熟知菱形ABCD的面积等于对角线乘积的一半是解题的关键.6、C【分析】根据一次函数与系数的关系,由已知函数图象判断k、b,然后根据系数的正负判断函数y=-bx+k的图象位置.【详解】∵函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴-b<0,∴函数y=-bx+k的图象经过第二、三、四象限.故选:C.【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.7、B【分析】由折叠的性质可得AD=BD,由△ABC的周长为38cm,△DBC的周长为25cm,可列出两个等式,可求解.【详解】∵将△ADE沿DE折叠,使点A与点B重合,

∴AD=BD,

∵△ABC的周长为38cm,△DBC的周长为25cm,

∴AB+AC+BC=38cm,BD+CD+BC=AD+CD+BC=AC+BC=25cm,

∴AB=13cm=AC

∴BC=25-13=12cm

故选:B.【点睛】本题考查了翻折变换,熟练运用折叠的性质是本题的关键.8、A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又,∴,∴PC+PQ的最小值为,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.9、B【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【详解】P的坐标为(﹣1,2),则点P位于第二象限,故选B.10、A【分析】根据题意可利用SSS判定△OEC≌△ODC,然后根据全等三角形的性质判断即可.【详解】解:根据题意,得:OE=OD,CE=CD,OC=OC,∴△OEC≌△ODC(SSS),∴,,∴B、C、D三项是正确的,而不一定成立.故选:A.【点睛】本题考查的是角平分线的尺规作图和全等三角形的判定和性质,属于基本题型,熟练掌握基本知识是关键.11、D【分析】根据因式分解的方法逐个判断即可.【详解】解:A、利用提公因式法进行因式分解正确,故本选项不符合题意;

B、利用公式法进行因式分解正确正确,故本选项不符合题意;

C、利用十字相乘法进行因式分解正确,故本选项不符合题意;

D、因式分解不正确,故本选项符合题意;

故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.12、B【分析】根据甲单独完成需要a天可得甲每天的工作效率为,同理表示出乙每天的工作效率为,接下来只需将两人一天完成的工作量求和即可【详解】由甲单独完成需要a天,得甲每天的工作效率为由乙单独完成需要b天,得乙每天的工作效率为则甲乙两人合作,每天的工作效率为+.故答案选B.【点睛】本题考查了列代数式,解题的关键是根据题意列出代数式.二、填空题(每题4分,共24分)13、144°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵四边形ABCD中,∠B=∠D=90°,∠C=72°∴∠DAB=108°,∴∠AA′M+∠A″=72°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,故填:144°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.14、4【分析】根据二次根式的性质直接化简即可.【详解】.故答案为:4.【点睛】此题主要考查了运用二次根式的性质进行化简,注意:.15、1【分析】先计算(1+m)(1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m)(1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m)(1+n)是解题关键.16、10【分析】首先解二元一次方程组求出x和y的值,然后分类讨论即可求出等腰三角形的周长.【详解】解:x,y满足方程组解得:,当2是腰是无法构成三角形,当4是腰是,三角形三边是4,4,2,此时三角形的周长是4+4+2=10,故答案是:10【点睛】本题主要考查了等腰三角形的性质、解二元一次方程组以及三角形三边关系,解题的关键是求出x和y的值,此题难度不大.17、【解析】先根据一次函数列出周长的式子,再根据垂线公理找到使周长最小时点P的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P的坐标为周长为则求周长的最小值即为求OP的最小值如图,过点O作由垂线公理得,OP的最小值为OD,即此时点P与点D重合由直线的解析式得,,则是等腰直角三角形,是等腰直角三角形,解得则周长的最小值为故答案为:.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出周长的式子,从而找到使其最小的点P位置是解题关键.18、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.三、解答题(共78分)19、见解析【分析】证法一:连接AD,由三线合一可知AD平分∠BAC,根据角平分线的性质定理解答即可;证法二:根据“AAS”△BED≌△CFD即可.【详解】证法一:连接AD.∵AB=AC,点D是BC边上的中点,∴AD平分∠BAC(等腰三角形三线合一性质),∵DE、DF分别垂直AB、AC于点E和F,∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC,∴∠B=∠C(等边对等角).∵点D是BC边上的中点,∴BD=DC,∵DE、DF分别垂直AB、AC于点E和F,∴∠BED=∠CFD=90°.在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).【点睛】本题考查了等腰三角形的性质,角平分线的性质,以及全等三角形的判定与性质,熟练掌握角平分线的性质以及全等三角形的判定与性质是解答本题的关键.20、(1);(2),【分析】(1)先利用平方差公式进行因式分解,然后再利用完全平方公式因式分解,即可得到答案;(2)先把分式进行化简,然后把m的值代入计算,即可得到答案.【详解】解:(1)==;(2)∵,∴===;把代入,得原式=;【点睛】本题考查了因式分解,分式的混合运算,分式的化简求值,完全平方公式和平方差公式的运用,解题的关键是熟练掌握运算法则,正确的进行因式分解,正确的进行化简.21、(1)见解析;(2)100°【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)先根据题意,得出∠ABC的度数;再根据等边对等角及三角形外角得出∠CMD=2∠CBM及∠DME=2∠EBM,从而求出∠CME的度数后即可得出答案.【详解】解:(1)∵M为BD中点,在Rt△DCB中,MC=BD,在Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°.【点睛】本题考查了直角三角形斜边的中线、三角形外角,等腰三角形等边对等角等知识,熟练掌握性质定理是解题的关键.22、(1)4本;2本;(2)108°;(3)该校捐4本书的学生约有416名.【分析】(1)根据捐2本的学生数所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据扇形统计图中的数据,利用“扇形圆心角度数=360°×所占百比例”即可得出结果;(3)根据样本估计总体的方法,利用学生总人数×捐4本书的学生人数所占的百分比可得出结果.【详解】解:(1)本次调查的人数为:15÷30%=50(人),捐书4本的学生人数为:50﹣9﹣15﹣7﹣6=13(人),将所捐图书数按照从小到大的顺序排列,则处在第25,26位的捐书数都为4本,∴此次随机调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论