2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题含解析_第1页
2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题含解析_第2页
2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题含解析_第3页
2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题含解析_第4页
2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省诸暨市浬浦中学八年级数学第一学期期末调研模拟试题拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在实数中,,,是无理数的是()A. B. C. D.2.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体 B.个体 C.样本 D.样本容量3.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为()A.1.6×10﹣9米 B.1.6×10﹣7米 C.1.6×10﹣8米 D.16×10﹣7米4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135° B.120° C.115° D.105°5.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个6.若2m=a,32n=b,m,n均为正整数,则23m+10n的值为()A.ab B.ab C.a+b D.ab7.下列各式中计算结果为的是()A. B. C. D.8.下列各式中是完全平方式的是()A. B. C. D.9.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等 B.相等的角是对顶角C.所有的直角都是相等的 D.若a=b,则a﹣3=b﹣310.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90° B.180° C.210° D.270°11.如图,在中,,,,点到的距离是()A. B. C. D.12.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A. B.MN垂直平分C.这两个三角形的面积相等 D.直线AB,的交点不一定在MN上二、填空题(每题4分,共24分)13.ax=5,ay=3,则ax﹣y=_____.14.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________15.已知,则的值等于___________.16.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.17.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=_____°.18.满足的整数的和是__________.三、解答题(共78分)19.(8分)已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b的值.20.(8分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0(1)求证:方程总有两个实数根;(2)若方程有一根为正数,求实数k的取值范围.21.(8分)计算或分解因式:(1)计算:;(2)分解因式:①;②22.(10分)如图,为轴上一个动点,(1)如图1,当,且按逆时针方向排列,求点的坐标.(图1)(2)如图2,当,且按顺时针方向排列,连交轴于,求证:(图2)(3)如图3,m>2,且按顺时针方向排列,若两点关于直线的的对称点,画出图形并用含的式子表示的面积图323.(10分)在如图所示的平面直角坐标系中,每个小方格都是边长为1的正方形,的顶点均在格点上,点的坐标是.(1)将沿轴正方向平移3个单位得到,画出,并写出点坐标;(2)画出关于轴对称的,并写出点的坐标.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3),过动点M(n,0)作x轴的垂线与直线l1和l2分别交于P、Q两点.(1)求m的值及l2的函数表达式;(2)当PQ≤4时,求n的取值范围;(3)是否存在点P,使S△OPC=2S△OBC?若存在,求出此时点P的坐标,若不存在,请说明理由.25.(12分)在一次捐款活动中,学校团支书想了解本校学生的捐款情况,随机抽取了50名学生的捐款进行了统计,并绘制成如图所示的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)如果捐款的学生有300人,估计这次捐款有多少元?26.已知:如图,OM是∠AOB的平分线,C是OM上一点,且CD⊥OA于D,CE⊥OB于E,AD=EB.求证:AC=CB.

参考答案一、选择题(每题4分,共48分)1、A【解析】无限不循环小数是无理数,根据定义判断即可.【详解】是无理数;是有理数,不是无理数;=3是有理数,不是无理数;=2是有理数,不是无理数,故选:A.【点睛】此题考查无理数定义,熟记定义并掌握无理数与有理数的区别即可正确解答.2、C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,

故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.3、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米,∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、D【分析】根据两直线平行同旁内角互补解答即可.【详解】解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.5、B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.6、A【分析】根据幂的乘方与积的乘方计算法则解答.【详解】解:∵,,

∴,

∴,

故选A.【点睛】本题考查了幂的乘方与与积的乘方,熟记计算法则即可解答.7、B【分析】利用同底数幂的乘法运算公式即可得出答案.【详解】A、x3和x2不是同类项,不能合并,故此选项错误;B、x3·x2=x3+2=x5,故此选项正确;C、x·x3=x1+3=x4,故此选项错误;D、x7和-x2不是同类项,不能合并,故此选项错误.故选B.【点睛】本题主要考查了同底数幂的乘法,熟知同底数幂相乘,底数不变,指数相加是解决此题的关键.8、A【分析】根据完全平方公式a2±2ab+b2=(a±b)2进行分析,即可判断.【详解】解:,是完全平方公式,A正确;其余选项不能配成完全平方形式,故不正确

故选:A.【点睛】本题考查完全平方公式,解题的关键是正确理解完全平方公式,本题属于基础题型.9、C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;

交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;

交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;

交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,

故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【分析】利用四边形内角和为360解决问题即可.【详解】解:∵∠A:∠B:∠C:∠D=1:4:2:5,∴∠C+∠D=360×=210,故选:C.【点睛】本题考查四边形内角和定理,解题的关键是熟练掌握基本知识,属于中考常考题型.11、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.12、D【分析】根据轴对称的性质逐项判断即可得.【详解】A、P到点A、点的距离相等正确,即,此项不符合题意;B、对称轴垂直平分任意一组对应点所连线段,因此MN垂直平分,此项不符合题意;C、由轴对称的性质得:这两个三角形的面积相等,此项不符合题意;D、直线AB,的交点一定在MN上,此项符合题意;故选:D.【点睛】本题考查了轴对称的性质,掌握轴对称的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】将同底数幂的除法公式进行逆用即可【详解】解:∵ax=5,ay=3,∴ax﹣y=ax÷ay=5÷3=.故答案为:【点睛】本题考查了同底数幂除法公式的逆用,解答关键是根据公式将原式进行变形后解答问题.14、1【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【详解】∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=1.故答案为:1.【点睛】本题考查了垂直平分线的性质,轴对称−最短路线问题的应用,解此题的关键是找出P的位置.15、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.16、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【点睛】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.17、1.【详解】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=1°.考点:线段垂直平分线的性质;等腰三角形的性质.18、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.【点睛】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.三、解答题(共78分)19、(1)±4;(2)5【解析】(1)分别求出一次函数y=2x+b与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b求出b的值.【详解】解:(1)令x=0代入y=2x+b,∴y=b,令y=0代入y=2x+b,∴x=-,∵y=2x+b的图象与坐标轴所围成的图象的面积等于4,∴×|b|×|-|=4,∴b2=16,∴b=±4;(2)联立,解得:,把(-1,3)代入y=2x+b,∴3=-2+b,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b的值,本题属于基础题型.20、(1)见解析;(1)k<1.【分析】(1)先求出△的值,再根据△的意义即可得到结论;(1)利用求根公式求得,然后根据方程有一根为正数列出关于k的不等式并解答.【详解】(1)△=(k﹣1)1﹣4(k﹣1)=k1﹣1k+1﹣4k+8=(k﹣3)1∵(k﹣3)1≥0,∴方程总有两个实数根.(1)∵,∴x1=﹣1,x1=1﹣k.∵方程有一个根为正数,∴1﹣k>0,k<1.【点睛】考查了根的判别式.体现了数学转化思想,属于中档题目.21、(1);(2)①;②【分析】(1)求出每一部分的值,再代入求出即可;(2)整理后再根据平方差公式分解即可.【详解】.解:(1)原式(2)①;②【点睛】本题考查了分解因式,绝对值,立方根,算术平方根等知识点的应用,熟悉概念和运算法则是解题关键.22、(1)C(3,1)(2)见解析(3)=.【分析】(1)作CD⊥x轴,根据题意证明△ABO≌△BCD即可求解;(2)过B点作GH⊥x轴,作AG⊥GH,CH⊥GH,同理可证△ABG≌△BCH,求出C点坐标,从而求出直线EC解析式,得到F点坐标即可求解;(3)根据题意作图,可得四边形ABCD为正方形,由(2)同理求出C点坐标,同理求出D点坐标,即可表示出.【详解】(1)∴作CD⊥x轴,∵∴又∴又∴△ABO≌△BCD(AAS)∴BD=AO=2,CD=OB=1∴C(3,1);(2)过B点作GH⊥x轴,作AG⊥GH,CH⊥GH,∵,同(1)可证△ABG≌△BCH,∵∴BH=AG=BO=3,CH=BG=AO=2∴C(1,-3)∵∴EO=2求得直线EC的解析式为y=-x-2∴F(0,-2)∴OF=2则;(3)根据题意作图,∵,可得△ABF≌△BCF,由可得BF=AE=m,CF=BE=2,∴C(m-2,-m)∵两点关于直线的的对称点,∴四边形ABCD为正方形同理△CDG≌△BCF≌△ABF∴CG=BF=AE=m,DG=CF=BE=2,∴D(-2,-m+2)∴===.【点睛】此题主要考查一次函数与几何,解题的关键是熟知一次函数的图像与性质、等腰三角形的性质、全等三角形的判定与性质.23、作图见解析,(1);(2).【分析】(1)根据图象平移的规律,只需要把、、三点坐标向上平移即可,把平移后的三个点坐标连接起来可得所求图形;(2)由图象的轴对称性可知,把三点坐标关于的对称点做出来,把三点连接后得到的图形即为所求图形.【详解】(1)沿轴正方向平移3个单位得到,如图所示:由图可知坐标为,故答案为:.(2)关于轴对称的,如图所示:由图可知点的坐标为故答案为:.【点睛】做平移图形和轴对称图形时,注意只需要把图形上的顶点进行平移,对称即可,把做出的点连接起来就可以得到所求图形.24、(1)m=2,l2的解析式为y=x;(2)0≤n≤4;(3)存在,点P的坐标(6,1)或(-2,5).【分析】(1)根据待定系数法,即可求解;(2)由l2与l1的函数解析式,可设P(n,﹣n+4),Q(n,n),结合PQ≤4,列出关于n的不等式,进而即可求解;(3)设P(n,﹣n+4),分两种情况:①当点P在第一象限时,②当点P在第二象限时,分别列关于n的一元一次方程,即可求解.【详解】(1)把C(m,3)代入一次函数y=﹣x+4,可得:3=﹣m+4,解得:m=2,∴C(2,3),设l2的解析式为y=ax,则3=2a,解得a=,∴l2的解析式为:y=x;(2)∵PQ∥y轴,点M(n,0),∴P(n,﹣n+4),Q(n,n),∵PQ≤4,∴|n+n﹣4|≤4,解得:0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论