高考数学 历真题专题08 立体几何 理_第1页
高考数学 历真题专题08 立体几何 理_第2页
高考数学 历真题专题08 立体几何 理_第3页
高考数学 历真题专题08 立体几何 理_第4页
高考数学 历真题专题08 立体几何 理_第5页
已阅读5页,还剩96页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

历届真题专题【年高考试题】一、选择题:1.(年高考山东卷理科11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3(B)2(C)1(D)0【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.2.(年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是4.(年高考安徽卷理科6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A)48(B)32+8(C)48+8(D)80【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。故【解题指导】:三视图还原很关键,每一个数据都要标注准确。5.(年高考辽宁卷理科8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下故AC⊥平面ABD,因为SB平面ABD,所以AC⊥SB,正确.对于B:因为AB//CD,所以AB//平面SCD.对于C:设.因为AC⊥平面ABD,所以SA和SC在平面SBD内的射影为SO,则∠ASO和∠CSO就是SA与平面SBD所成的角和SC与平面SBD所成的角,二者相等,正确.故选D.6.(年高考辽宁卷理科12)已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S-ABC的体积为()(A)(B)(C)(D)1第6题图答案:D解析:由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是D.点评:本题考查三视图、直观图及他们之间的互化,同时也考查空间想象能力和推理能力,要求有扎实的基础知识和基本技能。8.(年高考江西卷理科8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】过点作平面的垂线g,交平面,分别于点A、B两点,由两个平面平行的性质可知∥,所以,故选C.332正视图332正视图侧视图俯视图图1A.B.C.D.答案:B解析:由三视图可以还原为一个底面为边长是3的正方形,高为2的长方体以及一个直径为3的球组成的简单几何体,其体积等于。故选B评析:本小题主要考查球与长方体组成的简单几何体的三视图以及几何体的体积计算.10.(年高考广东卷理科7)如图l—3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()A.B.C.D.【解析】B.由题得三视图对应的直观图是如图所示的直四棱柱,。所以选B11.(年高考陕西卷理科5)某几何体的三视图如图所示,则它的体积是 (A)(B)(C)(D)【答案】A【解析】:由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为故选A12.(年高考重庆卷理科9)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为(A)(B)(C)1(D)解析:选C.设底面中心为G,球心为O,则易得,于是,用一个与ABCD所在平面距离等于的平面去截球,S便为其中一个交点,此平面的中心设为H,则,故,故13.(年高考四川卷理科3),,是空间三条不同的直线,则下列命题正确的是()(A),(B),(C),,共面(D),,共点,,共面【答案】C【解析】如图,作于,由为直二面角,,得平面,进而,又,,于是平面。故为到平面的距离。在中,利用等面积法得15.(年高考全国卷理科11)已知平面截一球面得圆M,过圆心M且与成,二面角的平面截该球面得圆N,若该球的半径为4,圆M的面积为4,则圆N的面积为(A)(B)(c)(D)【答案】D【解析】:由圆的面积为得,,在故选D二、填空题:1.(年高考辽宁卷理科15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.答案:小,正确运用公式求解。3.(年高考天津卷理科10)一个几何体的三视图如图所示(单位:),则这个几何体的体积为__________【答案】【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m,高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为.4.(年高考四川卷理科15)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,求球的表面积与该圆柱的侧面积之差是.答案:解析:时,,则5.(年高考全国卷理科16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于.6.(年高考福建卷理科12)三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于______。【答案】7.(年高考上海卷理科7)若圆锥的侧面积为,底面积为,则该圆锥的体积为。【答案】;三、解答题:1.(年高考山东卷理科19)(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠

ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.【解析】(Ⅰ)连结AF,因为EF∥AB,FG∥BC,EF∩FG=F,所以平面EFG∥平面ABCD,又易证∽,所以,即,即,又M为AD的中点,所以,又因为FG∥BC∥AD,所以FG∥AM,所以四边形AMGF是平行四边形,故GM∥FA,又因为GM平面ABFE,FA平面ABFE,所以GM∥平面ABFE.(Ⅱ)取AB的中点O,连结CO,因为AC=BC,所以CO⊥AB,又因为EA⊥平面ABCD,CO平面ABCD,所以EA⊥CO,又EA∩AB=A,所以CO⊥平面ABFE,在平面ABEF内,过点O作OH⊥BF于H,连结CH,由三垂线定理知:CH⊥BF,所以为二面角A-BF-C的平面角.设AB=2EF=,因为∠

ACB=,AC=BC=,CO=,,连结FO,容易证得FO∥EA且,所以,所以OH==,所以在中,tan∠

CHO=,故∠

CHO=,所以二面角A-BF-C的大小为.2.(年高考浙江卷理科20)(本题满分15分)如图,在三棱锥中,,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP⊥BC;(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面角?若存在,求出AM的长;若不存在,请说明理由。【解析】本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量即,可取由即得可取,由得解得,故综上所述,存在点M符合题意,法二(Ⅰ)证明:又因为所以平面故(Ⅱ)如图,在平面内作由(Ⅰ)知得平面,又平面所以平面平面在中,得在中,,在中,所以得,在中,得又即,.故平面DCQ,又平面PQC,所以平面PQC平面DCQ.4.(年高考安徽卷理科17)(本小题满分12分)如图,为多面体,平面与平面垂直,点在线段上,,△,△,△都是正三角形。(Ⅰ)证明直线∥;(=2\*ROMANII)求棱锥F-OBED的体积。【命题意图】:本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力。(1)【证法一】:同理可证,【解题指导】:空间线线、线面、面面位置关系的证明方法,一是要从其上位或下位证明,本题的第一问方法一,是从其上位先证明面面平行,再借助面面平行的性质得到线面平行,再借助线面平行的性质得到线线平行;二是借助中位线定理等直接得到;三是借助空间向量直接证明。求不规则的几何体体积或表面积,通常采用分割或补齐成规则几何体即可。求解过程要坚持“一找二证三求”的顺序和原则防止出错。5.(年高考全国新课标卷理科18)(本小题满分12分) 如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。分析:(1)要证明线线垂直只要证明线面垂直或者用向量去证明;(2)求二面角的余弦只需建立适当的坐标系,有空间向量来完成。解:(1)证明:在三角形ABD中,因为该三角形为直角三角形,所以,(2)建立如图的坐标系,设点的坐标分别是则,设平面PAB的法向量为,所以,取得,同理设平面PBC的法向量为,取得,于是,,因此二面角的余弦值是。点评:该题考查空间内的垂直关的证明,空间角的计算。考查定理的理解和运用,空间向量的运用。同时也考察了空间想象能力、逻辑思维能力和运算能力。解题时要注意法向量的计算和运用这一关键。6.(年高考天津卷理科17)(本小题满分13分)如图,在三棱柱中,是正方形的中心,,平面,且(Ⅰ)求异面直线AC与A1B1所成角的余弦值;(Ⅱ)求二面角的正弦值;(Ⅲ)设为棱的中点,点在平面内,且平面,求线段的长.所以二面角的正弦值为.(Ⅲ)由N为棱的中点,得,设,则,由平面,得,即,解得,故,因此,所以线段的长为.7.(年高考江西卷理科21)(本小题满分14分)(1)如图,对于任一给定的四面体,找出依次排列的四个相互平行的,使得且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面,其中每相邻两个平面间的距离为1,若一个正四面体的四个顶点满足:求该正四面体的体积.解析:如图,将此正四面体补形为正方体(如图),分别取AB、CD、、的中点E、F、、,平面与是分别过点、的两平行平面,若其距离为1,则正四面体满足条件,右图为正方体的下底面,设正方体的棱长为,若,因为,,在直角三角形ADE中,AM⊥DE,所以,所以,又正四面体的棱长为,所以此正四面体的体积为.本题考查立体几何中的面面关系、正四面体及体积计算.8.(年高考湖南卷理科19)(本小题满分12分)如图5,在圆锥中,已知=,⊙O的直径,是的中点,为的中点.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.解法1:连结OC,因为又底面⊙O,AC底面⊙O,所以,因为OD,PO是平面POD内的两条相交直线,所以平面POD,而平面PAC,所以平面POD平面PAC。(II)在平面POD中,过O作于H,由(I)知,平面所以平面PAC,又面PAC,所以在平面PAO中,过O作于G,连接HG,则有平面OGH,从而,故为二面角B—PA—C的平面角。在在在在所以故二面角B—PA—C的余弦值为解法2:(I)如图所示,以O为坐标原点,OB、OC、OP所在直线分别为x轴、y轴,z轴建立空间直角坐标系,则,设是平面POD的一个法向量,则由,得所以设是平面PAC的一个法向量,则由,得所以得。因为所以从而平面平面PAC。(II)因为y轴平面PAB,所以平面PAB的一个法向量为由(I)知,平面PAC的一个法向量为,设向量的夹角为,则由图可知,二面角B—PA—C的平面角与相等,所以二面角B—PA—C的余弦值为PBG 又PB//EF,得,而DE//GB得ADDE,又,所以AD平面DEF。(2), 为二面角P—AD—B的平面角, 在 在 法二:(1)取AD中点为G,因为 又为等边三角形,因此,,从而平面PBG。 由于 得 平面DEF。(2) 取平面ABD的法向量 设平面PAD的法向量 由 取 10.(年高考湖北卷理科18)(本小题满分12分)如图,已知,本棱柱ABC-A1B1C1CC1上,且不与点C重合.(Ⅰ)当CF=1时,求证:EF⊥A1E(Ⅱ)设二面角C-AF-E的大小为,求的最小值.本小题主要考查空间直线与平面的位置关系和二面角等基础知识,同时考查空间想象能力、推理论证能力和运算求解能力.解析:过E点作EN⊥AC于N,连结EF.(Ⅰ)如图1,连结NF、AC1,由直线柱的性质知,底面ABC⊥侧面A1C又底面ABC∩侧面A1C=AC,且EN底面ABC,所以EN⊥侧面A1C,为EF在侧面内的射影.在Rt△CEN中,CN=cos600=1.则由,得,又,故作,由三垂线定理知.(Ⅱ)如图2。连结AF,过N作NM⊥AF于M,连结ME,由(Ⅰ)知EN⊥侧面A1C。根据三垂线定理得EM⊥AF,所以EM⊥AF,所以是二面角的平面角,即.设则.在中.在中,,故,又,.故当,即当时,达到最小值,.此时F与C1重合.11.(年高考陕西卷理科16)(本小题满分12分)如图:在,沿把折起,使(Ⅰ)证明:平面;(Ⅱ)设。【解析】:(Ⅰ)折起前,当。(Ⅱ)由及(Ⅰ)知两两垂直,不妨设为坐标原点,以轴建立如图所示的空间(Ⅱ)如图所示设G、H分别为变CD,BD的中点,则FG//AD,GH//BC,,从而是异面直线与所成角或其补角。设E为边AB的中点,则EF//BC,由⊥,知⊥,又由(Ⅰ)有DF⊥平面,故由三垂线定理知⊥,所以为二面角--的平面角,由题设知,设AD=a,则DF=ADsinCAD=在中,,从而因,故BD=AD=a.从而,在中,,又,从而在中,因FG=FH,由余弦定理得,故异面直线与所成角的余弦值为.13.(年高考四川卷理科19)(本小题共l2分)如图,在直三棱柱AB-A1B1C1中.∠BAC=90°,AB=AC=AA1=1.D是棱CC1P是AD的延长线与A1C1的延长线的交点,且PB1(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值;(Ⅲ)求点C到平面B1DP的距离.(3)因为,所以,,在中,,(Ⅱ)过做平面,如图建立空间直角坐标系,可计算平面的一个法向量是,所以与平面所成角为15.(年高考安徽卷江苏16)如图,在四棱锥中,平面PAD⊥平面ABCD,16.(年高考北京卷理科16)(本小题共14分) 如图,在四棱锥中,平面,底面是菱形,.(Ⅰ)求证:平面 (Ⅱ)若求与所成角的余弦值; (Ⅲ)当平面与平面垂直时,求的长.证明:(Ⅰ)因为四边形ABCD是菱形,所以AC⊥BD.又因为PA⊥平面ABCD.所以PA⊥BD.所以BD⊥平面PAC.(Ⅱ)设AC∩BD=O.因为∠BAD=60°,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系O—xyz,则P(0,—,2),A(0,—,0),B(1,0,0),C(0,,0).所以设PB与AC所成角为,则.17.(年高考福建卷理科20)(本小题满分14分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,.(I)求证:平面PAB⊥平面PAD;(II)设AB=AP.(=1\*romani)若直线PB与平面PCD所成的角为,求线段AB的长;(=2\*romanii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。解析:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。解法一:(I)因为平面ABCD,平面ABCD,所以,又所以平面PAD。又平面PAB,所以平面平面PAD。(II)以A为坐标原点,建立空间直角坐标系A—xyz(如图)在平面ABCD内,作CE//AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,(i)设平面PCD的法向量为,由,,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以在平面ABCD内,作CE//AB交AD于E,则。在平面ABCD内,作CE//AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,由GC=CD,得,从而,即设,在中,这与GB=GD矛盾。所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。18.(年高考上海卷理科21)(14分)已知是底面边长为1的正四棱柱,是和的交点。(1)设与底面所成的角的大小为,二面角的大小为。求证:;(2)若点到平面的距离为,求正四棱柱的高。解:设正四棱柱的高为。⑴连,底面于,∴与底面所成的角为,即∵,为中点,∴,又,∴是二面角的平面角,即∴,。⑵建立如图空间直角坐标系,有设平面的一个法向量为,∵,取得∴点到平面的距离为,则。【高考试题】(浙江理数)(6)设,是两条不同的直线,是一个平面,则下列命题正确的是(A)若,,则(B)若,,则(C)若,,则(D)若,,则解析:选B,可对选项进行逐个检查。本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题。(全国卷2理数)(11)与正方体的三条棱、、所在直线的距离相等的点(A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.(全国卷2理数)(9)已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为(A)1(B)(C)2(D)3(辽宁理数)(12)(12)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是(A)(0,)(B)(1,)(C)(,)(D)(0,)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。【解析】根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即(江西理数)10.过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作A.1条B.2条C.3条D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。(北京理数)(8)如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积(A)与x,y,z都有关(B)与x有关,与y,z无关(C)与y有关,与x,z无关(D)与z有关,与x,y无关答案:D(北京理数)(3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为答案:C(四川理数)(11)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是(A)(B)(C)(D)解析:由已知,AB=2R,BC=R,故tan∠BAC=cos∠BAC=连结OM,则△OAM为等腰三角形AM=2AOcos∠BAC=,同理AN=,且MN∥CD而AC=R,CD=R故MN:CD=AN:ACMN=,连结OM、ON,有OM=ON=R于是cos∠MON=所以M、N两点间的球面距离是答案:A(全国卷1理数)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)(B)(C)(D)(全国卷1理数)(7)正方体ABCD-中,B与平面AC所成角的余弦值为(A)(B)(C)(D)(山东理数)(3)在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。1.(安徽理数)8、一个几何体的三视图如图,该几何体的表面积为A、280 B、292 C、360 D、3728.C【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。.【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体所以∥,故∥∥,所以选项A、C正确;因为平面,∥,所以平面,又平面,故,所以选项B也正确,故选D。【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力。(浙江理数)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________.解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题(辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.【答案】【命题立意】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。【解析】由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为(江西理数)16.如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为。【答案】【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得。(北京理数)(14)如图放置的边长为1的正方形PABC沿x轴滚动。设顶点p(x,y)的轨迹方程是,则的最小正周期为;在其两个相邻零点间的图像与x轴所围区域的面积为说明:“正方形PABC沿轴滚动”包括沿轴正方向和沿轴负方向滚动。沿轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在轴上时,再以顶点B为中心顺时针旋转,如此继续。类似地,正方形PABC可以沿轴负方向滚动。答案:4(四川理数)(15)如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是.解析:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D连结AD,有三垂线定理可知AD⊥l,CD故∠ADC为二面角的平面角,为60°CD又由已知,∠ABD=30°连结CB,则∠ABC为与平面所成的角设AD=2,则AC=,CD=1AB==4∴sin∠ABC=答案:(天津理数)(12)一个几何体的三视图如图所示,则这个几何体的体积为【答案】【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题。由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+=【温馨提示】利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦。(湖北文数)14.圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么(湖南理数)13.图3中的三个直角三角形是一个体积为20的几何体的三视图,则.(湖北理数)13.圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是cm。13.【答案】4【解析】设球半径为r,则由可得,解得r=4.(福建理数)12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.【答案】【解析】由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为。【命题意图】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。(浙江理数)(20)(本题满分15分)如图,在矩形中,点分别在线段上,.沿直线将翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长。解析:本题主要考察空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同事考查空间想象能力和运算求解能力。(Ⅰ)解:取线段EF的中点H,连结,因为=及H是EF的中点,所以,又因为平面平面.如图建立空间直角坐标系A-xyz则(2,2,),C(10,8,0),F(4,0,0),D(10,0,0).故=(-2,2,2),=(6,0,0).设=(x,y,z)为平面的一个法向量,-2x+2y+2z=0所以6x=0.取,则。又平面的一个法向量,故。所以二面角的余弦值为(Ⅱ)解:设则,因为翻折后,与重合,所以,故,,得,经检验,此时点在线段上,所以。方法二:(Ⅰ)解:取线段的中点,的中点,连结。因为=及是的中点,所以又因为平面平面,所以平面,又平面,故,又因为、是、的中点,易知∥,所以,于是面,所以为二面角的平面角,在中,=,=2,=所以.故二面角的余弦值为。(Ⅱ)解:设,因为翻折后,与重合,所以,而,得,经检验,此时点在线段上,所以。(全国卷2理数)(19)如图,直三棱柱中,,,为的中点,为上的一点,.(Ⅰ)证明:为异面直线与的公垂线;(Ⅱ)设异面直线与的夹角为45°,求二面角的大小.【命题意图】本试题主要考查空间的线面关系与空间角的求解,考查考生的空间想象与推理计算的能力.【参考答案】(19)解法一:(I)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.………………3分作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(II)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1【点评】三垂线定理是立体几何的最重要定理之一,是高考的的热点,它是处理线线垂直问题的有效方法,同时它也是确定二面角的平面角的主要手段.通过引入空间向量,用向量代数形式来处理立体几何问题,淡化了传统几何中的“形”到“形”的推理方法,从而降低了思维难度,使解题变得程序化,这是用向量解立体几何问题的独到之处.(辽宁理数)(19)(本小题满分12分)已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=½AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.证明:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).……4分(Ⅰ),因为,所以CM⊥SN……6分(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,则……9分因为所以SN与片面CMN所成角为45°。……12分(江西理数)20.(本小题满分12分)如图△BCD与△MCD都是边长为2的正三角形,平面MCD平面BCD,AB平面BCD,。求点A到平面MBC的距离;求平面ACM与平面BCD所成二面角的正弦值。【解析】本题以图形拼折为载体主要考查了考查立体图形的空间感、点到直线的距离、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力解法一:(1)取CD中点O,连OB,OM,则OB⊥CD,OM⊥CD.又平面平面,则MO⊥平面,所以MO∥AB,A、B、O、M共面.延长AM、BO相交于E,则∠AEB就是AM与平面BCD所成的角.OB=MO=,MO∥AB,MO//面ABC,M、O到平面ABC的距离相等,作OHBC于H,连MH,则MHBC,求得:OH=OCsin600=,MH=,利用体积相等得:。(2)CE是平面与平面的交线.由(1)知,O是BE的中点,则BCED是菱形.作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.因为∠BCE=120°,所以∠BCF=60°.,,所以,所求二面角的正弦值是.【点评】传统方法在处理时要注意到辅助线的处理,一般采用射影、垂线、平行线等特殊设平面ACM的法向量为,由得.解得,,取.又平面BCD的法向量为,则设所求二面角为,则.【点评】向量方法作为沟通代数和几何的工具在考察中越来越常见,此类方法的要点在于建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,但计算必须慎之又慎(重庆理数)(19)(本小题满分12分,(I)小问5分,(II)小问7分)如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。求直线AD与平面PBC的距离;若AD=,求二面角A-EC-D的平面角的余弦值。(北京理数)(16)(本小题共14分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.(Ⅰ)求证:AF∥平面BDE;(Ⅱ)求证:CF⊥平面BDE;(Ⅲ)求二面角A-BE-D的大小。证明:(I)设AC与BD交与点G。因为EF//AG,且EF=1,AG=AC=1.所以四边形AGEF为平行四边形.所以AF//平面EG,因为平面BDE,AF平面BDE,所以AF//平面BDE.所以且令则.所以.从而。因为二面角为锐角,所以二面角的大小为.(四川理数)(18)(本小题满分12分)已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;(Ⅱ)求二面角M-BC'-B'的大小;(Ⅲ)求三棱锥M-OBC的体积.本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。MN=1,NH=Bnsin45°=在Rt△MNH中,tan∠MHN=故二面角M-BC’-B’的大小为arctan2(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内点O到平面MA’D’距离h=VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=解法二:以点D为坐标原点,建立如图所示空间直角坐标系D-xyz则A(1,0,0),B(1,1,0),C(0,1,0),A’(1,0,1),C’(0,1,1),D’(0,0,1)(1)因为点M是棱AA’的中点,点O是BD’的中点所以M(1,0,),O(,,),=(0,0,1),=(-1,-1,1)=0,+0=0所以OM⊥AA’,OM⊥BD’又因为OM与异面直线AA’和BD’都相交故OM为异面直线AA'和BD'的公垂线.………………4分(2)设平面BMC'的一个法向量为=(x,y,z)=(0,-1,),=(-1,0,1)即取z=2,则x=2,y=1,从而=(2,1,2)取平面BC'B'的一个法向量为=(0,1,0)cos由图可知,二面角M-BC'-B'的平面角为锐角故二面角M-BC'-B'的大小为arccos………………9分(3)易知,S△OBC=S△BCD'A'=设平面OBC的一个法向量为=(x1,y1,z1)=(-1,-1,1),=(-1,0,0)即取z1=1,得y1=1,从而=(0,1,1)点M到平面OBC的距离d=VM-OBC=…………12分12分。方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,,,解:易得,于是所以异面直线与所成角的余弦值为证明:已知,,于是·=0,·=0.因此,,,又所以平面(3)解:设平面的法向量,则,即不妨令X=1,可得。由(2)可知,为平面的一个法向量。于是,从而所以二面角的正弦值为方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由,可知EF∥BC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以,所以异面直线FE与A1D所成角的余弦值为(2)证明:连接AC,设AC与DE交点N因为,所以,从而,又由于,所以,故AC⊥DE,又因为CC1⊥DE且,所以DE⊥平面ACF,从而AF⊥DE.连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为,所以AF⊥平面A1(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF,A1N平面ACF,所以DE⊥NF,DE⊥A1N,故为二面角A1-ED-F的平面角易知,所以,又所以,在(1)证明:EB⊥FD;(2)已知点Q,R分别为线段FE,FB上的点,使得,求平面与平面所成二面角的正弦值..故平面与平面所成二面角的正弦值是.(全国卷1理数)(19)(本小题满分12分)如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.(山东理数)(19)(本小题满分12分)如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P—ACDE的体积.【解析】(Ⅰ)证明:因为ABC=45°,AB=2,BC=4,所以在中,由余弦定理得:,解得,所以,即,又PA⊥平面ABCDE,所以PA⊥,又PA,所以,又AB∥CD,所以,又因为,所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作于H,则,又AB∥CD,AB平面内,所以AB平行于平面,所以点A到平面的距离等于点B到平面的距离,过点B作BO⊥平面于点O,则为所求角,且,又容易求得,所以,即=,所以直线PB与平面PCD所成角的大小为;(Ⅲ)由(Ⅰ)知,所以,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE的面积为,所以四棱锥P—ACDE的体积为=。(湖南理数)(湖北理数)18.(本小题满分12分)如图,在四面体ABOC中,,且(Ⅰ)设为为的中点,证明:在上存在一点,使,并计算的值;(Ⅱ)求二面角的平面角的余弦值。(福建理数)概率为。(i)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值。【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、必然与或然思想。【解析】(Ⅰ)因为平面ABC,平面ABC,所以,因为AB是圆O直径,所以,又,所以平面,而平面,所以平面平面。(Ⅱ)(i)设圆柱的底面半径为,则AB=,故三棱柱的体积为=,又因为,所以=,当且仅当时等号成立,从而,而圆柱的体积,故=当且仅当,即时等号成立,所以的最大值是。(ii)由(i)可知,取最大值时,,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),(0,r,2r),因为平面,所以是平面的一个法向量,设平面的法向量,由,故,取得平面的一个法向量为,因为,所以。(安徽理数)18、(本小题满分12分)如图,在多面体中,四边形是正方形,∥,,,,,为的中点。(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求二面角的大小。(江苏卷)16、(本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。求证:PC⊥BC;求点A到平面PBC的距离。[解析]本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。由∠BCD=900,得CD⊥BC,又PDDC=D,PD、DC平面PCD,所以BC⊥平面PCD。因为PC平面PCD,故PC⊥BC。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为AB∥DC,∠BCD=900,所以∠ABC=900。从而AB=2,BC=1,得的面积。由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。又PD=DC=1,所以。由PC⊥BC,BC=1,得的面积。由,,得,故点A到平面PBC的距离等于。【高考试题】9.(广东文6理5)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和②B.②和③C..③和④D.②和④答案:D解析:①错,②正确,③错,④正确.故选D10.(宁夏海南文理11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为(A)48+12(B)48+24(C)36+12(D)36+24解析:选A.11.(宁夏海南文9理8)如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是(A)(B)(C)三棱锥的体积为定值(D)异面直线所成的角为定值解析:A正确,易证B显然正确,;C正确,可用等积法求得;D错误。选D.12.(山东文理4)一空间几何体的三视图如图所示,则该几何体的体积为().A.B.C.D.2222侧(左)视图222正(主)视图解析::该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为所以该几何体的体积为.答案:C【命题立意】:本题考查了立体几何中的空间想象能力,由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.的中心,则与平面所成角的大小是()A.B.C.D.答案:C解析:取BC的中点E,则面,,因此与平面所成角即为,设,则,,即有3.(天津文理12)如图是一个几何体的三视图,若它的体积是,则_______【考点定位】本小题考查三视图、三棱柱的体积,基础题。解析:知此几何体是三棱柱,其高为3,底面是底边长为2,底边上的高为的等腰三角形,所以有4.(江苏12)设和为不重合的两个平面,给出下列命题:(1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。上面命题中,真命题的序号▲(写出所有真命题的序号).解析:考查立体几何中的直线、平面的垂直与平行判定的相关定理。真命题的序号是(1)(2)随着F点到C点时,因平面,即有,对于,又,因此有,则有,因此的取值范围是解:(I)(综合法)连接AC、BD交于菱形的中心O,过O作OGAF,G为垂足。连接BG、DG。由BDAC,BDCF得BD平面ACF,故BDAF。于是AF平面BGD,所以BGAF,DGAF,BGD为二面角B-AF-D的平面角。由,,得,由,得由知,平面ABF与平面ADF垂直,二面角B-AF-D的大小等于。(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。过H作HP⊥平面ABCD,P为垂足。因为EA⊥平面ABCD,FC⊥平面ABCD,,所以平面ACFE⊥平面ABCD,从而由得。又因为故四棱锥H-ABCD的体积15.(·福建理17)(13分)如图,四边形ABCD是边长为1的正方形,,,且MD=NB=1,E为BC的中点求异面直线NE与AM所成角的余弦值在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由经检验,当时,平面.故线段上存在点,使得平面,此时.17.(·广东理18)(本小题满分14分)如图6,已知正方体的棱长为2,点E是正方形的中心,点F、G分别是棱的中点.设点分别是点E,G在平面内的正投影.(1)求以E为顶点,以四边形在平面内的正投影为底面边界的棱锥的体积;(2)证明:直线;(3)求异面直线所成角的正统值(3),,则,设异(2)用反证法证明:直线ME与BN是两条异面直线。(18)解:(1)解法一:取CD的中点G,连结MG,NG,.设正方形ABCD,DCEF的边长为2,则MG⊥CD,MG=2,NG=,.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF。可得∠MNG是MN与平面DCEF所成的角。因为MN=,所以,故MN与平面DCEF所成的角的正弦值为.所以AB∥EN,又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾,故假设不成立.所以ME与BN不共面,它们是异面直线.20.(·宁夏海南理19)(本小题满分12分)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。解法一:(Ⅰ)连BD,设AC交BD于O,由题意。在正方形ABCD中,,所以,得.(Ⅱ)设正方形边长,则。又,所以,连,由(Ⅰ)知,所以,且,所以是二面角的平面角。由,知,所以,即二面角的大小为。(Ⅲ)在棱SC上存在一点E,使由(Ⅱ)可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.解法二:(Ⅰ);连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。设底面边长为,则高。于是故,从而(Ⅱ)由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为(Ⅲ)在棱上存在一点使.由(Ⅱ)知是平面的一个法向量,且设则而,即当时,而不在平面内,故(2)因为AB=4,BC=CD=2,、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角,在△BCF为正三角形中,,在Rt△CC1F中,△OPF∽△CC1F,∵∴,在Rt△OPF中,,,所以,所以,所以直线EE//平面FCC.(2),设平面BFC1的法向量为,则所以,取,则,,,所以,由图可知二面角B-FC-C为锐角,所以二面角B-FC-C的余弦值为.【命题立意】:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.26.(江苏16)(本小题满分14分)如图,在直三棱柱中,、分别是、的中点,点在上,。求证:(1)EF∥平面ABC;(2)平面平面.[解析]本小题主要考查直线与平面、平面与平面得位置关系,考查空间想象能力、推理论证能力。满分14分。27.(·天津文理19)(本小题满分12分)如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD(I)求异面直线BF与DE所成的角的大小;(II)证明平面AMD平面CDE;(III)求二面角A-CD-E的余弦值。(II)证明:因为(III)由(I)可得,方法二:如图所示,建立空间直角坐标系,点为坐标原点。设依题意得(I)所以异面直线与所成的角的大小为.(II)证明:,(III)又由题设,平面的一个法向量为【高考试题】5.(·山东卷)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π(B)10π(C)11π(D)12π解析:考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论