




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第01讲平行四边形的性质课程标准学习目标①平行四边形的概念②平行四边形的性质③平行线间的距离掌握平行四边形的概念并能够进行简单的判断。掌握平行四边形的性质并能够熟练的进行相关的应用。掌握平行线间的距离并熟练应用知识点01平行四边形的概念平行四边形的概念:有两组对边分别的四边形叫做平行四边形。用符号“▱”来表示。平行四边形ABCD表示为“▱ABCD”。知识点02平行四边形的性质平行四边形的性质:①边的性质:平行四边形的两组对边分别(平行由定义证明,相等由连接对角线证明全等可得)。②角的性质:平行四边形的邻角,对角。(由平行与邻角转换可得)③对角线的性质:平行四边形的对角线(连接两条对角线证明全等可得)。④平行四边形的面积计算:等于。⑤平行四边形的对称性:是一个中心对称图形。⑥过对角线交点的直线把平行四边形分成两个全等的图形。直线与对边的交点到对角线的交点的距离相等。【即学即练1】1.以下平行四边形的性质错误的是()A.对边平行 B.对角相等 C.对边相等 D.对角线互相垂直【即学即练2】2.如图,在▭ABCD中,∠A+∠C=80°,则∠D=()A.80° B.40° C.70° D.140°【即学即练3】3.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=12,CD=4,则△ABO的周长是()A.9 B.10 C.11 D.12知识点03平行线间的距离平行线间的距离的定义:一组平行线中,其中一条平行线上任意一点到另一条平行线的是这一组平行间的距离。平行线间的距离的性质:①两条平行线间的距离。②平行线间的平行线段。【即学即练1】4.如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CD B.CE=FG C.A、B两点间距离就是线段AB的长度 D.l1与l2两平行线间的距离就是线段CD的长度题型01平行线的性质的理解判断【典例1】关于平行四边形的性质,下列描述错误的是()A.平行四边形的对角线相等 B.平行四边形的对角相等 C.平行四边形的对角线互相平分 D.平行四边形的对边平行且相等【变式1】平行四边形不一定具有的性质是()A.对边平行且相等 B.对角相等 C.对角线相等 D.对角线互相平分【变式2】如图所示,在平行四边形ABCD中,对角线AC、BD交于点O,下列结论中一定成立的是()A.AC⊥BD B.OA=OC C.AC=AB D.OA=OB【变式3】平行四边形ABCD的对角线AC与BD交于点O,若∠AOB=180°﹣2∠BAO,那么下列说法正确的是()A.AB=OB B.AB=OA C.AC=BD D.AC⊥BD题型02平行四边形的性质与角度的计算【典例1】在▱ABCD中,若∠A=∠B+50°,则∠B的度数为度.【变式1】在▱ABCD中,∠A+∠C=220°,则∠D的度数是()A.70° B.80° C.90° D.110°【变式2】如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为()A.155° B.130° C.125° D.110°【变式3】如图,在▱ABCD中,∠A=68°,DB=DC,CE⊥BD于E,则∠BCE的度数为.【变式4】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是()A.30° B.35° C.40° D.45°题型03平行四边形的性质与线段长度的计算【典例1】如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是()A.16 B.18 C.20 D.22【变式1】如图,在平行四边形ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()变式1变式2A.4 B.3 C.2 D.1【变式2】在▱ABCD中,尺规作图后留下的痕迹如图所示,若AB=3cm,AD=10cm,则EF的长为()A.3cm B.3.5cm C.4cm D.4.5cm【变式3】如图,在▱ABCD中,∠ABC、∠BCD的角平分线交于边AB上一点E,且BE=AB=,线段CE的长为()A.2 B.3 C.﹣2 D.3【变式4】如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=5,AB=CF=3,则CG的长为.题型04平行四边形的面积【典例1】观察如图中的三个平行四边形,你认为说法正确的是()A.它们形状相同,面积相等 B.它们形状相同,面积不相等 C.它们形状不相同,面积相等 D.它们形状不相同,面积不相等【变式1】一个平行四边形两条邻边的长度分别是6cm、8cm,且一条底边上的高是7cm,则这个平行四边形的面积是()cm2.A.42cm2 B.56cm2 C.48cm2 D.42cm2或者56cm2【变式2】图中,平行四边形的面积是30平方厘米,下列说法错误的是()A.S甲=S乙+S丙 B.S甲:S乙:S丙=5:2:3 C.S甲=15平方厘米 D.S丙=6平方厘米【变式3】如图,F是▱ABCD的边CD上的点,Q是BF中点,连接CQ并延长交AB于点E,连接AF与DE相交于点P,若,,则阴影部分的面积为()cm2A.24 B.17 C.18 D.10题型05平行四边形的周长【典例1】如图,在平行四边形ABCD中,AC=4m,若△ACD的周长为13cm,则平行四边形ABCD的周长为()A.26cm B.24cm C.20cm D.18cm【变式1】如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=24,则△BOC的周长为.【变式2】如图,▱ABCD的对角线AC、BD交于点O,▱ABCD的周长为30,直线EF过点O,且与AD,BC分别交于点E.F,若OE=5,则四边形ABFE的周长是()A.30 B.25 C.20 D.15【变式3】如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为()cm.A.11 B.18 C.20 D.22【变式4】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为()A.13或14 B.26或28 C.13 D.无法确定题型06利用平行四边形的性质求坐标【典例1】在平面直角坐标系xOy中,▱ABCD的对角线交于点O.若点A的坐标为(﹣2,3),则点C的坐标为.【变式1】(多选)29.如图,在直角坐标系中,以点O(0,0),A(﹣2,﹣1),B(0,2)为四边形的三个顶点构造平行四边形,则下列各点中可以作为第四个顶点的是()A.(﹣2,1) B.(﹣2,﹣3) C.(3,3) D.(2,3)【变式2】在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)【变式3】如图,在平面直角坐标系中,▱ABCD的边AD在x轴上,顶点B在y轴上,点A,D的坐标分别是(2,0),(7,0),∠OBA=30°,则顶点C的坐标为()A. B. C. D.题型07平行线间的距离【典例1】如图,直线l1∥l2,l1和AB的夹角∠DAB=135°,且AB=4mm,则两平行线l1和l2之间的距离是()A.2 B.4 C. D.【变式1】如图,已知直线a∥直线b,点A,B分别在直线a和直线b上,若AB=6,∠1=60°,则直线a与直线b之间的距离是.【变式2】如图,a∥b,点A、B分别在直线a、b上,∠1=45°,点C在直线b上,且∠BAC=105°,若a、b之间的距离为3,则线段AC的长度为.【变式3】在同一平面内,已知a∥b,b∥c,若直线a、b之间的距离为7cm,直线b、c之间的距离为3cm,则直线a、c间的距离为()A.4cm或10cm B.4cm C.10cm D.不确定1.如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论错误的是()A.ABCD B.OB=OD C.AB=AD D.∠ABC=∠ADC2.在▱ABCD中,如果∠A+∠C=160°,那么∠C等于()A.20° B.40° C.60° D.80°3.如图,若直线m∥n,则下列哪条线段的长可以表示平行线m与n之间的距离()A.AB B.AC C.AD D.DE4.如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于()A.1 B.1.5 C.2 D.35.平面直角坐标系中,A、B、C三点坐标分别为(0,0),(0,﹣4),(﹣3,3),以这三点为平行四边形的三个顶点,则第四个顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知直线a,b,c在同一平面内,且a∥b∥c,a与b之间的距离为5cm,b与c之间的距离为3cm,则a与c之间的距离是()A.2cm B.8cm C.2cm或8cm D.以上都不对7.如图,在▱ABCD中,AD:AB=3:4,AE平分∠DAB交CD于点E,交BD于点F,则的值是()A.3:4 B.9:16 C.4:3 D.16:98.如图,▱ABCD中,AB=22cm,BC=8cm,∠A=45°,动点E从A出发,以2cm/s的速度沿AB向点B运动,动点F从点C出发,以1cm/s的速度沿着CD向D运动,当点E到达点B时,两个点同时停止.则EF的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s9.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BF=BE;④PF=PC.其中正确的个数为()A.1个 B.2个 C.3个 D.4个10.如图所示,以▱ABCD的边AB为边向内作等边△ABE,使AD=AE,且点E在平行四边形内部,连接DE,CE,则∠CED的度数为()A.150° B.145° C.135° D.120°11.如图,l1∥l2,点A在直线l1上,点B、C在直线l2上,AC⊥l2.如果AB=5cm,BC=4cm.那么平行线l1,l2之间的距离为cm.12.如图,▱ABCD的对角线交于坐标原点O.若点A的坐标为(﹣,1),点B的坐标为(﹣1,﹣1),则BC=.13.在平行四边形ABCD中,∠ABC=60°,AE为边BC上的高,,CE=2,则平行四边形ABCD的周长为.14.如图,在△ABC中,∠BAC=30°,AB=AC=12,P为AB边上一动点,以PA,PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为.15.如图,在平行四边形ABCD中,点E,F分别是AD,BC边的中点,延长CD至点G,使DG=CD,以DG,DE为边向平行四边形ABCD外构造平行四边形DGME,连接BM交AD于点N,连接FN.若DG=DE=2,∠ADC=60°,则FN的长为.16.如图,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.17.如图,直线a∥b,AB与a,b分别相交于点A,B,且AC⊥AB,AC交直线b于点C.(1)若∠1=70°,求∠2的度数;(2)若AC=5,AB=12,BC=13,求直线a与b的距离.18.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,DE=4.(1)求证:∠DEA=90°;(2)求CE的长.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童生理知识
- 2025二手汽车买卖合同
- 《我爱雪莲花》(教学设计)-2023-2024学年人音版(2012)音乐二年级下册
- 2025标准中介租房合同协议书范本
- 2024秋九年级化学上册 第七单元 燃料及其利用 课题 1 燃烧和灭火第1课时 燃烧的条件及灭火的原理教学设计4(新版)新人教版
- 2025专业版保密合同协议样本
- 2025雇佣厨师合同模板
- 2024年五年级英语下册 Unit 3 Lets make a kite第3课时教学实录 湘少版
- Module 1(教学设计)-2024-2025学年外外研版(一起)英语五年级下册
- 12古诗三首《示儿》教学设计2024-2025学年统编版语文五年级上册
- 中间人协议书范本(2025年)
- 2024-2030年全球及中国石榴花提取物行业发展动态及供需前景预测报告
- 桥隧建筑物安全监控相关知79课件讲解
- 九下 化学 科学 第七单元 跨学科实践活动:海洋资源的综合利用与制盐
- 预防校园欺凌安全教育课件
- 全国园地、林地、草地分等定级数据库规范1123
- 女性的中医养生保健
- 2024年 广西壮族自治区 数学 中考真题
- 汽车行业智能汽车维修与保养方案
- 中国国家图书奖历届获奖书目(第1-8届)
- 自然辩证法学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论