![人教版数学八年级下册导学案-17.2-第2课时-勾股定理的逆定理的应用_第1页](http://file4.renrendoc.com/view14/M05/13/17/wKhkGWbLKcCARr5xAAKa-NDT0A0333.jpg)
![人教版数学八年级下册导学案-17.2-第2课时-勾股定理的逆定理的应用_第2页](http://file4.renrendoc.com/view14/M05/13/17/wKhkGWbLKcCARr5xAAKa-NDT0A03332.jpg)
![人教版数学八年级下册导学案-17.2-第2课时-勾股定理的逆定理的应用_第3页](http://file4.renrendoc.com/view14/M05/13/17/wKhkGWbLKcCARr5xAAKa-NDT0A03333.jpg)
![人教版数学八年级下册导学案-17.2-第2课时-勾股定理的逆定理的应用_第4页](http://file4.renrendoc.com/view14/M05/13/17/wKhkGWbLKcCARr5xAAKa-NDT0A03334.jpg)
![人教版数学八年级下册导学案-17.2-第2课时-勾股定理的逆定理的应用_第5页](http://file4.renrendoc.com/view14/M05/13/17/wKhkGWbLKcCARr5xAAKa-NDT0A03335.jpg)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十七章勾股定理教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-14)第2课时勾股定理的逆定理的应用学习目标:1.灵活应用勾股定理及其逆定理解决实际问题;2.将实际问题转化成用勾股定理的逆定理解决的数学问题.重点:灵活应用勾股定理及其逆定理解决实际问题.难点:将实际问题转化成用勾股定理的逆定理解决的数学问题.自主学习自主学习一、知识回顾1.你能说出勾股定理及其逆定理的内容吗?快速填一填:(1)已知△ABC中,BC=41,AC=40,AB=9,则此三角形为_______三角形,_________是最大角;(2)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是__________cm.课堂探究课堂探究要点探究探究点1:勾股定理的逆定理的应用典例精析例1如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:题目已知“远航”号的航向、两艘船的一个半小时后的航程及距离,实质是要求出两艘船航向所成角,由此容易联想到勾股定理的逆定理.方法总结:解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.变式题如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,BC=8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?分析:根据勾股定理的逆定可得△ABC是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积教学备注2.教学备注2.探究点1新知讲授(见幻灯片6-14)5.课堂小结(见幻灯片30)例2一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?针对训练1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C在B地的什么方向?2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?探究点2:勾股定理及其逆定理的综合应用典例精析例3如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.分析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断△ACD是直角三角形.方法总结:四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.变式题1如图,四边形ABCD中,AB⊥AD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD的面积.教学备注配套PPT教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片15-19)变式题2如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30cm2,DC=12cm,AB=3cm,BC=4cm,求△ABC的面积.针对训练1.如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,BC=5,BD=2.(1)求证:△BCD是直角三角形;(2)求△ABC的面积.教学备注配套PPT教学备注配套PPT讲授4.课堂小结(见幻灯片27)5.当堂检测(见幻灯片20-26)与勾股定理结合解决不规则图形等问题二、课堂小结与勾股定理结合解决不规则图形等问题应用应用航海问题勾股定理的逆定理的应用航海问题勾股定理的逆定理的应用认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题方法认真审题,画出符合题意的图形,熟练运用勾股定理及其逆定理来解决问题方法当堂检测当堂检测1.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东______的方向.2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是()ABCD如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.此时,A,B两组行进的方向成直角吗?请说明理由.教学备注5.当堂检测(见教学备注5.当堂检测(见幻灯片20-26)在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?如图,在△ABC中,AB:BC:CA=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度婴幼儿保育员职业资格认证聘用合同
- 2025年度茶叶出口退税代理服务合同-@-3
- 2025年度防盗门安装工程安全生产责任合同
- 2025年度农村土地征收补偿安置协议
- 2025年度董事任期考核及聘任合同
- 2025年陈设艺术陶瓷制品项目发展计划
- 动手实践小班农业劳动体验计划
- 秋季学校社团活动规划计划
- 促进幼儿积极参与的活动设计计划
- 建立职业目标与价值观的统计划
- 重大事故隐患排查治理
- 部编版语文一年级下册第一单元教材解读
- 护士临床护理组长
- 2025保安部年度工作计划
- 土建、装饰、维修改造等零星工程施工组织设计技术标
- 宠物猫护理教学
- 高速公路养护作业安全培训内容
- 2024年江苏经贸职业技术学院单招职业适应性测试题库
- 《大白菜种植栽培技》课件
- 北京工业大学《数据挖掘》2023-2024学年第一学期期末试卷
- 图书借阅登记表
评论
0/150
提交评论