江苏省南通市海安中学2022年高考数学全真模拟密押卷含解析_第1页
江苏省南通市海安中学2022年高考数学全真模拟密押卷含解析_第2页
江苏省南通市海安中学2022年高考数学全真模拟密押卷含解析_第3页
江苏省南通市海安中学2022年高考数学全真模拟密押卷含解析_第4页
江苏省南通市海安中学2022年高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知与分别为函数与函数的图象上一点,则线段的最小值为()A. B. C. D.62.已知双曲线的右焦点为,若双曲线的一条渐近线的倾斜角为,且点到该渐近线的距离为,则双曲线的实轴的长为A. B.C. D.3.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为()A. B. C. D.4.已知集合,则全集则下列结论正确的是()A. B. C. D.5.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A. B. C. D.6.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.7.已知,则()A. B. C. D.8.已知等式成立,则()A.0 B.5 C.7 D.139.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}10.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.11.已知函数则函数的图象的对称轴方程为()A. B.C. D.12.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是14.已知抛物线C:y2=4x的焦点为F,准线为l,P为C上一点,PQ垂直l于点Q,M,N分别为PQ,PF的中点,MN与x轴相交于点R,若∠NRF=60°,则|FR|等于_____.15.已知向量,且向量与的夹角为_______.16.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆外有一点,过点作直线.(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长.18.(12分)设函数,其中是自然对数的底数.(Ⅰ)若在上存在两个极值点,求的取值范围;(Ⅱ)若,函数与函数的图象交于,且线段的中点为,证明:.19.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.20.(12分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.21.(12分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.22.(10分)已知直线与抛物线交于两点.(1)当点的横坐标之和为4时,求直线的斜率;(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算能力.2.B【解析】

双曲线的渐近线方程为,由题可知.设点,则点到直线的距离为,解得,所以,解得,所以双曲线的实轴的长为,故选B.3.C【解析】

将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.4.D【解析】

化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.5.C【解析】

由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:.【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.6.A【解析】

作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.7.C【解析】

利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.8.D【解析】

根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【详解】由可知:令,得;令,得;令,得,得,,而,所以.故选:D【点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.9.A【解析】

解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.10.C【解析】

利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.11.C【解析】

,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.12.C【解析】

先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.14.2【解析】

由题意知:,,,.由∠NRF=60°,可得为等边三角形,MF⊥PQ,可得F为HR的中点,即求.【详解】不妨设点P在第一象限,如图所示,连接MF,QF.∵抛物线C:y2=4x的焦点为F,准线为l,P为C上一点∴,.∵M,N分别为PQ,PF的中点,∴,∵PQ垂直l于点Q,∴PQ//OR,∵,∠NRF=60°,∴为等边三角形,∴MF⊥PQ,易知四边形和四边形都是平行四边形,∴F为HR的中点,∴,故答案为:2.【点睛】本题主要考查抛物线的定义,属于基础题.15.1【解析】

根据向量数量积的定义求解即可.【详解】解:∵向量,且向量与的夹角为,∴||;所以:•()2cos2﹣2=1,故答案为:1.【点睛】本题主要考查平面向量的数量积的定义,属于基础题.16.【解析】

将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【详解】将三棱锥补成长方体,设,,,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,,因此,三棱锥的外接球面积为.故答案为:.【点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)或(2).【解析】

(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即∴,解得∴直线的方程为∴直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为∴弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.18.(Ⅰ);(Ⅱ)详见解析.【解析】

(Ⅰ)依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;(Ⅱ)由题解得,,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:(Ⅰ)由题意可知,,在上存在两个极值点,等价于在有两个不等实根,由可得,,令,则,令,可得,当时,,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;(Ⅱ)由题解得,,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需证明:令,则在上为减函数,,即成立成立,所以成立.【点睛】本题考查利用导数研究函数的单调性、极值,利用导数证明不等式,属于难题;19.(1),,表示以为圆心为半径的圆;为抛物线;(2)【解析】

(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【详解】(1)消去参数的直角坐标方程为:.的极坐标方程.∵,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方程为.【点睛】本题考查了极坐标,参数方程综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20.(1)AB的中点的横坐标为;(2)证明见解析;(3)【解析】

设.(1)因为直线的倾斜角为,,所以直线AB的方程为,联立方程组,消去并整理,得,则,故线段AB的中点的横坐标为.(2)根据题意得点,若直线AB的斜率为0,则直线AB的方程为,A、C两点重合,显然M,B,C三点共线;若直线AB的斜率不为0,设直线AB的方程为,联立方程组,消去并整理得,则,设直线BM、CM的斜率分别为、,则,即=,即M,B,C三点共线.(3)根据题意,得直线GH的斜率存在,设该直线的方程为,设,联立方程组,消去并整理,得,由,整理得,又,所以,结合,得,当时,该直线为轴,即,此时椭圆上任意一点P都满足,此时符合题意;当时,由,得,代入椭圆C的方程,得,整理,得,再结合,得到,即,综上,得到实数的取值范围是.21.(1);(2).【解析】

(1)求导得到,讨论和两种情况,计算函数的单调性,得到,再讨论,,三种情况,计算得到答案.(2)计算得到,讨论,两种情况,分别计算单调性得到函数最值,得到答案.【详解】(1),①当时恒成立,所以单调递增,因为,所以有唯一零点,即符合题意;②当时,令,函数在上单调递减,在上单调递增,函数。(i)当即,所以符合题意,(ii)当即时,因为,故存在,所以不符题意(iii)当时,因为,设,所以,单调递增,即,故存在,使得,不符题意;综上,的取值范围为。(2)。①当时,恒成立,所以单调递增,所以,即符合题意;②当时,恒成立,所以单调递增,又因为,所以存在,使得,且当时,。即在上单调递减,所以,不符题意。综上,的取值范围为.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论