![2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷含解析_第1页](http://file4.renrendoc.com/view12/M07/31/00/wKhkGWbEKh2AeZ-PAAHcbT8PbAw879.jpg)
![2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷含解析_第2页](http://file4.renrendoc.com/view12/M07/31/00/wKhkGWbEKh2AeZ-PAAHcbT8PbAw8792.jpg)
![2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷含解析_第3页](http://file4.renrendoc.com/view12/M07/31/00/wKhkGWbEKh2AeZ-PAAHcbT8PbAw8793.jpg)
![2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷含解析_第4页](http://file4.renrendoc.com/view12/M07/31/00/wKhkGWbEKh2AeZ-PAAHcbT8PbAw8794.jpg)
![2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷含解析_第5页](http://file4.renrendoc.com/view12/M07/31/00/wKhkGWbEKh2AeZ-PAAHcbT8PbAw8795.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年广西壮族自治区南宁市初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1052.3的倒数是()A. B. C. D.3.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形4.下列汽车标志中,不是轴对称图形的是()A. B. C. D.5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+46.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.7.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣38.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个9.如图,AB∥CD,那么()A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补10.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3二、填空题(共7小题,每小题3分,满分21分)11.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.12.计算:sin30°﹣(﹣3)0=_____.13.如图,直线经过、两点,则不等式的解集为_______.14.如图,小红将一个正方形纸片剪去一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少厘米?设正方形边长为xcm,则可列方程为_____.15.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段OC-A.B.C.D.16.不等式组的非负整数解的个数是_____.17.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.19.(5分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.20.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.21.(10分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.22.(10分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.23.(12分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.24.(14分)观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3、D【解析】
根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.【点睛】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.4、C【解析】
根据轴对称图形的概念求解.【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、D【解析】
∵函数的图象过点A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是.故选D.6、B【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.7、C【解析】
根据不等式的性质得出x的解集,进而解答即可.【详解】∵-1<2x+b<1∴,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴,解得:-3≤b≤-1,故选C.【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.8、B【解析】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9、C【解析】
分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10、B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.【详解】∵共有15个方格,其中黑色方格占5个,∴这粒豆子落在黑色方格中的概率是=,故答案为.【点睛】此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.12、-【解析】
sin30°=,a0=1(a≠0)【详解】解:原式=-1=-故答案为:-.【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.13、-1<X<2【解析】经过点A,∴不等式x>kx+b>-2的解集为.14、4x=5(x-4)【解析】按照面积作为等量关系列方程有4x=5(x﹣4).15、C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.16、1【解析】
先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.【详解】解:解①得:x≥﹣,解②得:x<1,∴不等式组的解集为﹣≤x<1,∴其非负整数解为0、1、2、3、4共1个,故答案为1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.17、﹣2【解析】
要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.【详解】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因为点A在反比例函数y=的图象上,∴mn=1.∵点B在反比例函数y=的图象上,∴B点的坐标是(-1n,1m).∴k=-1n•1m=-4mn=-2.故答案为-2.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.三、解答题(共7小题,满分69分)18、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为或【解析】
(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.19、(1)见解析;(2)tan∠DBC=.【解析】
(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.20、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】
(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;
(2)先求出抛物线的对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.22、(1)见解析;(2)见解析;(3).【解析】
(1)根据P(m,n)移到P(m+6,n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB11-T 1130-2024 公共建筑节能运行管理与监测技术规程
- 2025年01月吉安市吉州区社会福利院面向社会编外工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2024年12月甘肃庆阳华池县医疗保障局选聘医疗保障基金社会监督员10人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- Unit+2+Expressing+yourself+PartB(课件)【知识精研】人教PEP版(2024)英语三年级下册
- 外科病人的体液失衡课件
- Chapter 1 Buying snacks period 4【知识精研】二年级英语下学期(新思维小学英语)
- 《IT与企业业务流程》课件
- 《销售商与管理商》课件
- 企業家精神與創業風險-杜拉克經典课件
- 《接发列车作业》课件
- 国家电投《新能源电站单位千瓦造价标准值(2024)》
- 2024年社会工作者(中级)-社会综合能力考试历年真题可打印
- 原发性肺癌临床路径
- 九年级化学下册 第12单元 化学与生活教案 (新版)新人教版
- 后腹腔镜下输尿管切开取石术
- 二手车购买收据合同范本
- 2022版义务教育英语课程标准整体解读课件
- 01 H5入门知识课件
- 2024年安全生产网络知识竞赛题库及答案(共五套)
- 2024年实验小学大队委竞选笔试试题题库
- 学校办公室卫生制度
评论
0/150
提交评论