基本计数原理和排列组合概念复习及专题训练含答案_第1页
基本计数原理和排列组合概念复习及专题训练含答案_第2页
基本计数原理和排列组合概念复习及专题训练含答案_第3页
基本计数原理和排列组合概念复习及专题训练含答案_第4页
基本计数原理和排列组合概念复习及专题训练含答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

优秀教案欢迎下载优秀教案欢迎下载优秀教案欢迎下载第一章计数原理———基本计数原理和排列组合(概念篇)概念回顾:(一)两个原理.1.加法原理每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)2.乘法原理任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同3.可以有重复元素的排列.从个不同元素中,每次取出个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第位上选取元素的方法都是个,所以从个不同元素中,每次取出个元素可重复排列数例如:件物品放入个抽屉中,不限放法,共有多少种不同放法?(解:种)(二)排列组合1、排列(1)排列数的计算:从个不同元素中取出个元素排成一列,称为从个不同元素中取出个元素的一个排列.从个不同元素中取出个元素的一个排列数,用符号表示.(2)排列数公式:注意:规定注:含有可重元素的排列问题对含有相同元素求排列个数的方法是:设重集有个不同元素其中限重复数为,且,则的排列个数等于.例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.2、组合(1)组合数的计算:从个不同的元素中任取个元素并成一组,叫做从个不同元素中取出个元素的一个组合.从个不同元素中取出个元素的一个排列数,用符号表示。(2)排列数公式::规定(3)两个公式:①②二、基础训练:1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A)24个(B)30个(C)40个(D)60个2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有()(A)12种(B)18种(C)24种(D)96种3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()(A)6种(B)9种(C)18种(D)24种4.由0,l,2,3,4,5这六个数字组成的无重复数字的三位数中,奇数个数与偶数个数之比为()(A)l:l(B)2:3(C)12:13(D)21:235.由0,l,2,3,4这五个数字组成无重复数字的五位数中,从小到大排列第86个数是()(A)42031(B)42103(C)42130(D)430216.若直线方程的系数可以从0,1,2,3,6,7六个数中取不同的数值,则这些方程所表示的直线条数是()(A)一2(B)(C)+2(D)-27.从这五个元素中任取四个排成一列,不排在第二的不同排法有()(A)(B)(C)(D)8.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?9.6个人站一排,甲不在排头,共有种不同排法.10.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.11.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.三、解题方法及训练:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:1、特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个(30个)2、插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决。例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______(答案:3600)3、捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种(答案:240)4、排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法排列组合应用题往往和数学其他章节某些知识联系,从而增加了问题的综合性,解答时,要注意使用相关知识对答案进行取舍。例如:从集合中任取3个元素分别作为直线方程中的A、B、C,所得的经过坐标原点的直线有_________条(答案:30)5、剪截法(隔板法):个相同小球放入个盒子里,要求每个盒子里至少有一个小球的放法等价于个相同小球串成一串从间隙里选个结点剪成段(插入块隔板),有种方法练一练:例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.解:(1)是“相邻”问题,用捆绑法解决:(2)是“不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决:另法:用捆绑与剔除相结合:(3)是“相邻”问题,应先捆绑后排位:(4)是“不相邻”问题,可以用插空法直接求解:真题训练:20XX年一、选择题1.(2009广东卷理)20XX年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A.36种B.12种C.18种D.48种【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A.4.(2009北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.120【答案】C【解析】本题主要考查排列组合知识以及分步计数原理知识.属于基础知识、基本运算的考查.2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,于是由分步计数原理,符合题意的偶数共有(个).故选C.6.(2009北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识.属于基础知识、基本运算的考查.首先应考虑“0”是特殊元素,当0排在末位时,有(个),当0不排在末位时,有(个),于是由分类计数原理,得符合题意的偶数共有(个).故选B.7.(2009全国卷Ⅱ文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种(B)12种(C)24种(D)30种答案:C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种。8.(2009全国卷Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(D)(A)150种(B)180种(C)300种(D)345种解:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法.选D10.(2009湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为【答案】C【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲乙被分在同一个班的有种,所以种数是12.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有=12种排法三类之和为24+12+12=48种。13.(2009全国卷Ⅱ理)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有 A.6种B.12种C.30种D.36种解:用间接法即可.种.故选C14.(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种(B)80种(C)100种(D)140种【解析】直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84-10-4=70种.【答案】A15.(2009湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有A.120种B.96种C.60种D.48种【答案】C【解析】5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有××=60种,故选C16.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为【B】A.14B.16C.20D.48解:由间接法得,故选B.17.(2009全国卷Ⅰ文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种(B)180种(C)300种(D)345种【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。解:由题共有,故选择D。18.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.60B.48C.42D.36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有=12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有=12种排法三类之和为24+12+12=48种。20.(2009陕西卷文)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A)432(B)288(C)216(D)108答案:C.解析:首先个位数字必须为奇数,从1,3,5,7四个中选择一个有种,再丛剩余3个奇数中选择一个,从2,4,6三个偶数中选择两个,进行十位,百位,千位三个位置的全排。则共有故选C.21.(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位[C]A85B56C49D28【答案】:C【解析】解析由条件可分为两类:一类是甲乙两人只去一个的选法有:,另一类是甲乙都去的选法有=7,所以共有42+7=49,即选C项。22.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A.360B.188C.216D.96【考点定位】本小题考查排列综合问题,基础题。解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中男生甲站两端的有,符合条件的排法故共有188解析2:由题意有,选B。二、填空题1.(2009宁夏海南卷理)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。解析:,答案:1407.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答)【考点定位】本小题考查排列实际问题,基础题。解析:个位、十位和百位上的数字为3个偶数的有:种;个位、十位和百位上的数字为1个偶数2个奇数的有:种,所以共有个。10.(2009浙江卷理)甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).答案:336【解析】对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种.20XX年(2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种(B)18种(C)36种(D)54种【解析】B:本题考查了排列组合的知识∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有,余下放入最后一个信封,∴共有(2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A)30种(B)36种(C)42种(D)48种解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即=42法二:分两类甲、乙同组,则只能排在15日,有=6种排法甲、乙不同组,有=36种排法,故共有42种方法(2010重庆理数)(9)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有种方法甲乙排中间,丙排7号或不排7号,共有种方法故共有1008种不同的排法(2010北京理数)(4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A)(B)(C)(D)答案:A(2010四川理数)(10)由1、2、3、4、5、6组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论