版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18/18河北省石家庄二中2017年高考模拟数学试卷(理科)答案1~5.DBCBC6~10.ABBAD11~12.BC13.24014.15.16.217.解:(Ⅰ)当时,可得又因为,代入表达式可得,满足上式.所以数列是首项为,公比为4的等比数列,故:(Ⅱ)证明:时,..18.证明:(Ⅰ)因为是的三等分点,所以,所以是等边三角形,又因为是的中点,所以因为所以平面,又,所以平面,平面,所以.因为,所以平面.因为平面,所以.解:(Ⅱ)以点为坐标原点,所在直线为轴,所在直线为轴,过且与直线平行的直线为轴,建立空间直角坐标系.因为平面,所以为直线与平面所成角.由题意得,即,从而.不防设,又,则故于是设平面与平面的法向量分别为,由,令,得.由,令,得,所以所以二面角的平面角大小为.19.解:因为选修数学学科人数所占总人数频率为,即,可得:,又,所以,则根据分层抽样法:抽取的10人中选修线性代数的人数为:人;选修微积分的人数为:人;选修大学物理的人数为:人;选修商务英语的人数为:人;选修文学写作的人数为:人;(Ⅰ)现从10人中选3人共有种选法,且每种选法可能性都相同,令事件:选中的3人至少两人选修线性代数,事件:选中的3人有两人选修线性代数,事件:选中的3人都选修线性代数,且为互斥事件,(Ⅱ)记为3人中选修线性代数的代数,的可能取值为0,1,2,3,记为3人中选修微积分的人数;的可能取值也为0,1,2,3,则随机变量的可能取值为0,1,2,3;;,,所以的分布列为:0123所以20.解:(Ⅰ)设椭圆的焦距为,由题意可得:,由题意的离心率,解得:,则,故椭圆方程为:;(Ⅱ)①证明:由题意可知直线的斜率存在,设直线的方程:,由点在直线上,则,联立直线与椭圆方程:,可得:,又直线与椭圆只有一个公共点,故,即;由韦达定理,可得点坐标,由直线过椭圆右焦点为,则直线的斜率;而直线的斜率,则:.②由,,则,即,∴三角形的面积,由直线的斜率为,可得直线的方程:与椭圆方程联立可得:,整理得:,则,,则,则,令,则,由函数的单调性可知:,单调递增,故,当时,面积的最小值.∴面积的最小值.21.解:(Ⅰ)由题意可得:,可得:;又,当时,单调递增;当时,单调递减;故函数的单调增区间为.(Ⅱ),因为是的两个极值点,故是方程的两个根,由韦达定理可知:;,可知,又,令,可证在递减,由,从而可证所以令,,所以单调减,故,所以即.22.解:(Ⅰ)的普通方程为,的普通方程为,的极坐标方程为.(Ⅱ)由可得的极坐标方程为,与直线联立可得:,即,同理可得.所以,在上单调递减,所以的最大值是.23.解:(Ⅰ)当时,不等式,即故有,求得,即不等式的解集为.(Ⅱ),即恒成立,,当时,①等价于,解得;当时,①等价于,即,解得,所以的取值范围是
河北省石家庄二中2017年高考模拟数学试卷(理科)解析1.【考点】交集及其运算.【分析】求出集合A,B,根据集合的交集定义进行计算.【解答】解:∵log2x>1=log22,∴x>2,∴B=(2,+∞),∵x2﹣4x+3<0,∴(x﹣3)(x﹣1)<0,解得1<x<3,∴A=(1,3),∴A∩B=(2,3),故选:2.【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵复数z满足=i,∴z+i=﹣2﹣zi,化为:z===﹣+i.=﹣﹣i.则|+1|===.故选:3.【考点】任意角的三角函数的定义.【分析】由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即可得出结论.【解答】解:由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即(﹣2cosθ,﹣2sinθ),故选4.【考点】指数函数的单调性与特殊点.【分析】根据不等式的基本性质和指数函数和对数函数的性质即可判断.【解答】解:∵0<a<b<1,c>1,∴ac<bc,abc>bac,∴logab>logba,logac>logbc,故选:5.【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,可得答案.【解答】解:当输入的x为2017时,第1次执行循环体后,x=2015,输出y=3﹣2015+1;第2次执行循环体后,x=2013,输出y=3﹣2013+1;第3次执行循环体后,x=2011,输出y=3﹣2011+1;…第1007次执行循环体后,x=3,输出y=3﹣3+1;第1008次执行循环体后,x=1,输出y=3﹣1+1;第1009次执行循环体后,x=﹣1,输出y=31+1=4;第1010次执行循环体后,x=﹣3,输出y=33+1=28;此时不满足x≥﹣1,输出y=28,故选:6.【考点】等比数列的前n项和.【分析】由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y即可得出.【解答】解:由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y=.相见时大鼠打了1+2+=3尺长的洞,小鼠打了1++=1尺长的洞,x=2+=2天,故选:7.【考点】几何概型.【分析】本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)>0对应的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.【解答】解:f(1)=﹣1+a﹣b>0,即a﹣b>1,如图,A(1,0),B(4,0),C(4,3),S△ABC=,P==,故选:8.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求得m=sin(2•)=,故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,求得n的最小值值,可得mn的最小值.【解答】解:函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,∴m=sin(2•)=.故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,∴m=cos[2(+n)﹣]=cos(2n﹣)=,∴应有2n﹣=,∴n=,则mn的最小值为,故选:9.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.进而得出.【解答】解:由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.该几何体的表面积S=×2++=2+2+.故选:10.【考点】进行简单的合情推理.【分析】依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×f(m1,1),将m1=60,m2=50,f(1,1)=2,代入得结论.【解答】解:依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×(m2﹣1),将m1=60,m2=50,f(1,1)=2,代入得483.故选D11.【考点】双曲线的简单性质.【分析】由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即可求出双曲线的离心率.【解答】解:设A(x1,y1),B(x2,y2),M(b,yM),由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即a4=(c2﹣a2)c2,有e4﹣e2﹣1=0,得e=.故选12.【考点】根的存在性及根的个数判断.【分析】判断f(x)的单调性,求出极值,得出方程f(x)=t的解的情况,得出关于t的方程t2﹣(2m+1)t+m2+m=0的根的分布区间,利用二次函数的性质列不等式解出m的范围.【解答】解:f(x)=,∴f′(x)=.∴当0<x<1或x>e时,f′(x)>0,当1<x<e时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,e)上单调递减,在(e,+∞)上单调递增,作出f(x)的大致函数图象如图所示:令f(x)=t,则当0<t<e时,方程f(x)=t有1解,当t=e时,方程f(x)=t有2解,当t>e时,方程f(x)=t有3解,∵关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,∴关于t的方程t2﹣(2m+1)t+m2+m=0在(0,e)和(e,+∞)上各有一解,∴,解得e﹣1<m<e.故选.13.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为4,求出r的值,将r的值代入通项求出展开式中含x4项的系数【解答】解:展开式的通项为Tr+1=C6r(﹣2)rx,令得18﹣r=4,解得r=4,∴展开式中含x4项的系数为(﹣2)4C64=240,故答案为:240.14.【考点】向量的模.【分析】求出+2,求出|+2|的解析式,根据三角函数的运算性质计算即可.【解答】解:=(cos5°,sin5°),=(cos65°,sin65°),则+2=(cos5°+2cos65°,sin5°+2sin65°),则|+2|===,故答案为:.15.【考点】利用导数研究函数的极值;分段函数的应用.【分析】由f'(x)=6x2﹣6,x>t,知x>t时,f(x)=2x3﹣6x一定存在单调递增区间,从而要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调,必须有f(x)=(4a﹣3)x+2a﹣4不能为增函数,由此能求出a的取值范围.【解答】解:对于函数f(x)=2x3﹣6x,f'(x)=6x2﹣6,x>t当6x2﹣6>0时,即x>1或x<﹣1,此时f(x)=2x3﹣6x,为增函数当6x2﹣6<0时,﹣1<x<1,∵x>t,∴f(x)=2x3﹣6x一定存在单调递增区间要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调∴f(x)=(4a﹣3)x+2a﹣4不能为增函数∴4a﹣3≤0,∴a≤.故a的取值范围是(﹣∞,].故答案为:(﹣∞,].16.【考点】三角形中的几何计算.【分析】设∠DBM=θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,继而可得=,问题得以解决【解答】解:设∠DBM=θ,则∠ADC=2θ,∠DAC=﹣2θ,∠AMB=﹣2θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,∴===,从而MA=2,故答案为:2.17.【考点】数列递推式;数列的求和.【分析】(I)利用数列递推关系、等比数列的通项公式即可得出.(II)利用“裂项求和”方法、数列的单调性即可得出.【解答】解:(Ⅰ)当时,可得又因为,代入表达式可得,满足上式.所以数列是首项为,公比为4的等比数列,故:(Ⅱ)证明:时,..18.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)推导出△ABC是等边三角形,从而CM⊥AB,再由DB⊥AB,DB⊥BC,知DB⊥平面ABC,又EA∥DB,从而EA⊥平面ABC,进而CM⊥EA.由此CM⊥平面EAM.进而能证明CM⊥EM.(Ⅱ)以点M为坐标原点,MC所在直线为x轴,MB所在直线为y轴,过M且与直线BD平行的直线为z轴,建立空间直角坐标系M﹣xyz.利用向量法能求出二面角B﹣CD﹣E的平面角.【解答】证明:(Ⅰ)因为是的三等分点,所以,所以是等边三角形,又因为是的中点,所以因为所以平面,又,所以平面,平面,所以.因为,所以平面.因为平面,所以.解:(Ⅱ)以点为坐标原点,所在直线为轴,所在直线为轴,过且与直线平行的直线为轴,建立空间直角坐标系.因为平面,所以为直线与平面所成角.由题意得,即,从而.不防设,又,则故于是设平面与平面的法向量分别为,由,令,得.由,令,得,所以所以二面角的平面角大小为.19.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用分层抽样求出各个选修人数,利用互斥事件的概率求解从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求出ξ的可能值,就是概率,即可得到随机变量ξ的分布列和数学期望.【解答】解:因为选修数学学科人数所占总人数频率为,即,可得:,又,所以,则根据分层抽样法:抽取的10人中选修线性代数的人数为:人;选修微积分的人数为:人;选修大学物理的人数为:人;选修商务英语的人数为:人;选修文学写作的人数为:人;(Ⅰ)现从10人中选3人共有种选法,且每种选法可能性都相同,令事件:选中的3人至少两人选修线性代数,事件:选中的3人有两人选修线性代数,事件:选中的3人都选修线性代数,且为互斥事件,(Ⅱ)记为3人中选修线性代数的代数,的可能取值为0,1,2,3,记为3人中选修微积分的人数;的可能取值也为0,1,2,3,则随机变量的可能取值为0,1,2,3;;,,所以的分布列为:0123所以20.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由b=,椭圆的离心率公式,即可求得a和c的值,求得椭圆方程;(Ⅱ)①设直线方程,代入椭圆方程,由△=0,分别求得kOM,kPQ,即可求得kOM•为定值;②设直线方程,代入椭圆方程,由韦达定理,弦长公式,求得S△PQM=•,根据函数的单调性即可求得△PQM面积的最小值.【解答】解:(Ⅰ)设椭圆的焦距为,由题意可得:,由题意的离心率,解得:,则,故椭圆方程为:;(Ⅱ)①证明:由题意可知直线的斜率存在,设直线的方程:,由点在直线上,则,联立直线与椭圆方程:,可得:,又直线与椭圆只有一个公共点,故,即;由韦达定理,可得点坐标,由直线过椭圆右焦点为,则直线的斜率;而直线的斜率,则:.①由,,则,即,∴三角形的面积,由直线的斜率为,可得直线的方程:与椭圆方程联立可得:,整理得:,则,,则,则,令,则,由函数的单调性可知:,单调递增,故,当时,面积的最小值.∴面积的最小值.21.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)求出g(x)的导数,求出g(x1)﹣g(x2)的解析式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前台的辞职报告模板合集七篇
- 迎新年晚会意义策划
- 2023一年级数学上册 八 认识钟表(小明的一天)教学实录 北师大版
- 2024-2025学年新教材高中化学 第五章 化工生产中的重要非金属元素 1.3 硫酸根离子检验、硫和含硫化合物的相互转化教学实录 新人教版必修2
- 2024秋八年级道德与法治上册 第一单元 成长的空间 第一课 相亲相爱一家人(他们这样做的原因)教学思路 人民版
- 2024年某城市地铁线路建设及运营管理长期租赁合同
- 实际正常和标准成本法ActualNormalandStandardCosting
- 广州市来穗人员服务管理局来穗人员积分制服务管理信息系统
- 2022天宫课堂第三课观后感10篇范文
- 2023二年级数学下册 7 万以内数的认识第8课时 近似数教学实录 新人教版
- 急性失血性休克液体复苏专家共识
- GB/T 3917.1-2009纺织品织物撕破性能第1部分:冲击摆锤法撕破强力的测定
- GB/T 35694-2017光伏发电站安全规程
- GB/T 19418-2003钢的弧焊接头缺陷质量分级指南
- 高中语文文言文断句课件
- 义务教育历史课程标准(2022年版)【重新整理版】
- 2023届新高考二卷语文点对点攻关训练专题:文学类文本阅读
- 2023-计算机考研408真题及答案
- 福建省宁德市各县区乡镇行政村村庄村名明细及行政区划代码
- 垃圾焚烧锅炉系统安装方案
- 应急物资台账新参考模板范本
评论
0/150
提交评论