上海市重点中学2022-2023学年数学九上期末经典模拟试题含解析_第1页
上海市重点中学2022-2023学年数学九上期末经典模拟试题含解析_第2页
上海市重点中学2022-2023学年数学九上期末经典模拟试题含解析_第3页
上海市重点中学2022-2023学年数学九上期末经典模拟试题含解析_第4页
上海市重点中学2022-2023学年数学九上期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一人乘雪橇沿坡度为1:的斜坡滑下,滑下距离S(米)与时间t(秒)之间的关系为S=10t+2t2,若滑动时间为4秒,则他下降的垂直高度为()A.72米 B.36米 C.米 D.米2.如图是二次函数的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是抛物线上两点,则y1<y2,其中正确的结论有()个A.1 B.2 C.3 D.43.一元二次方程的根是A. B. C., D.,4.二次函数y=kx2+2x+1的部分图象如图所示,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.0<k<15.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.π B.π C.π D.π6.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形 B.矩形 C.线段 D.梯形7.一个铝质三角形框架三条边长分别为24cm、30cm、36cm,要做一个与它相似的铝质三角形框架,现有长为27cm、45cm的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有()A.0种 B.1种 C.2种 D.3种8.如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1.下列结论:①;②;③;④当时,是等腰直角三角形.其中结论正确的个数是()A.4个 B.1个 C.2个 D.1个9.将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是()A. B. C. D.10.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是()A.①③④ B.②③④ C.①②③ D.①②④二、填空题(每小题3分,共24分)11.关于x的方程的两个根是﹣2和1,则nm的值为_____.12.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.13.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.14.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.15.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.16.如图,在等边△ABC中,AB=8cm,D为BC中点.将△ABD绕点A.逆时针旋转得到△ACE,则△ADE的周长为_________cm.17.已知两个相似三角形与的相似比为1.则与的面积之比为________.18.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.三、解答题(共66分)19.(10分)如图,是⊙的直径,是⊙的切线,点为切点,与⊙交于点,点是的中点,连结.(1)求证:是⊙的切线;(2)若,,求阴影部分的面积.20.(6分)“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.21.(6分)解方程:(1)(2)22.(8分)已知关于的方程.(1)求证:无论为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为-1,则另一个根为.23.(8分)如图,的直径AB为20cm,弦,的平分线交于D,求BC,AD,BD的长.24.(8分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.25.(10分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是_______元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为5元的人数所占的圆心角度数是_____度;(3)一周内的零花钱数额为20元的有5人,其中有2名是女生,3名是男生,现从这5人中选2名进行个别教育指导,请用画树状图或列表法求出刚好选中2名是一男一女的概率.26.(10分)一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3.小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球,记下标号.若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;(2)请判断这个游戏是否公平,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】求滑下的距离,设出下降的高度,表示出水平高度,利用勾股定理即可求解.【详解】当时,,设此人下降的高度为米,过斜坡顶点向地面作垂线,在直角三角形中,由勾股定理得:,解得.故选:.【点睛】此题主要考查了坡角问题,理解坡比的意义,使用勾股定理,设未知数,列方程求解是解题关键.2、A【分析】①由抛物线的开口方向、对称轴即与y轴交点的位置,可得出a<0、b>0、c>0,进而即可得出abc<0,结论①错误;②由抛物线的对称轴为直线x=1,可得出2a+b=0,结论②正确;③由抛物线的对称性可得出当x=2时y>0,进而可得出4a+2b+c>0,结论③错误;④找出两点离对称轴的距离,比较后结合函数图象可得出y1=y2,结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向下,对称轴为直线x=1,与y轴交于正半轴,

∴a<0,=1,c>0,∴b=-2a>0,∴abc<0,结论①错误;②抛物线对称轴为直线x=1,

∴=1,∴b=-2a,∴2a+b=0,结论②正确;③∵抛物线的对称轴为直线x=1,与x轴的一个交点坐标是(-1,0),∴另一个交点坐标是(3,0),∴当x=2时,y>0,∴4a+2b+c>0,结论③错误;④=,,∵抛物线的对称轴为直线x=1,抛物线开口向下,∴y1=y2,结论④错误;综上所述:正确的结论有②,1个,故选择:A.【点睛】本题考查了二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,观察函数图象,逐一分析四条结论的正误是解题的关键.3、B【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【详解】(x﹣2)2=0,则x1=x2=2,故选B.【点睛】本题主要考查了直接开平方法解一元二次方程,关键是掌握要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4、D【分析】由二次函数y=kx2+2x+1的部分图象可知开口朝上以及顶点在x轴下方进行分析.【详解】解:由图象可知开口朝上即有0<k,又因为顶点在x轴下方,所以顶点纵坐标从而解得k<1,所以k的取值范围是0<k<1.故选D.【点睛】本题考查二次函数图像性质,根据开口朝上以及顶点在x轴下方分别代入进行分析.5、C【解析】试题解析:∵PA、PB是⊙O的切线,

∴∠OBP=∠OAP=90°,

在四边形APBO中,∠P=60°,

∴∠AOB=120°,

∵OA=2,

∴的长l=.

故选C.6、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.7、B【解析】先判断出两根铝材哪根为边,需截哪根,再根据相似三角形的对应边成比例求出另外两边的长,由另外两边的长的和与另一根铝材相比较即可.【详解】∵两根铝材的长分别为27cm、45cm,若45cm为一边时,则另两边的和为27cm,27<45,不能构成三角形,∴必须以27cm为一边,45cm的铝材为另外两边,设另外两边长分别为x、y,则(1)若27cm与24cm相对应时,,解得:x=33.75cm,y=40.5cm,x+y=33.75+40.5=74.25cm>45cm,故不成立;(2)若27cm与36cm相对应时,,解得:x=22.5cm,y=18cm,x+y=22.5+18=40.5cm<45cm,成立;(3)若27cm与30cm相对应时,,解得:x=32.4cm,y=21.6cm,x+y=32.4+21.6=54cm>45cm,故不成立;故只有一种截法.故选B.8、C【分析】①x=1=−,即b=−2a,即可求解;②当x=1时,y=a+b+c<0,即可求解;③分别判断出a,b,c的取值,即可求解;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),即可求解.【详解】其图象与x轴的交点A,B的横坐标分别为−1和1,则函数的对称轴为:x=1,①x=1=−,即b=−2a,故不符合题意;②当x=1时,y=a+b+c<0,符合题意;③由图可得开口向上,a>0,对称轴x=1,∴a,b异号,b<0,图像与y轴交于负半轴,c<0∴>0,不符合题意;④时,函数的表达式为:y=(x+1)(x−1)=,则点A、B、D的坐标分别为:(−1,0)、(1,0)(1,−2),AB2=(-1-1)2+02=16,AD2=(-1-1)2+(0-2)2=8,BD2=(1-1)2+(0-2)2=8,故△ABD是等腰直角三角形符合题意;故选:C.【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9、B【解析】如图(见解析),先利用翻折的性质、直角三角形的性质求出的度数,再根据垂径定理、等腰三角形的性质得出度数,从而得出的度数,最后根据翻折的性质得出,利用扇形的面积公式即可得.【详解】如图,过点O作,并延长OD交圆O与点E,连接OA、OB、OC(垂径定理)由翻折的性质得(等腰三角形的三线合一)同理可得故选:B.【点睛】本题考查了垂径定理、翻折的性质、扇形的面积公式等知识点,利用翻折的性质得出的度数是解题关键.10、D【分析】为BC,AC中点,可得由于可得;可证故①正确.②由于则可证,故②正确.设,可得可判断③错,④正确.【详解】解:①∵为BC,AC中点,;故①正确.②,故②正确.③④设,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.二、填空题(每小题3分,共24分)11、﹣1【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.【详解】解:∵关于x的方程的两个根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.12、(1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用13、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【详解】画树状图如下:∵共有6种可能情况,恰好两只手套凑成同一双的情况有2种,∴恰好两只手套凑成同一双的概率为,故答案为:【点睛】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.14、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)

故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.15、240m【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.16、12【分析】由旋转可知,由全等的性质及等边三角形的性质可知是等边三角形,利用勾股定理求出AD长,可得△ADE的周长.【详解】解:△ABC是等边三角形,D为BC中点,AB=8在中,根据勾股定理得由旋转可知是等边三角形所以△ADE的周长为cm.故答案为:【点睛】本题主要考查了等边三角形的判定和性质,灵活利用等边三角形的性质是解题的关键.17、2【分析】根据相似三角形的面积比等于相似比的平方,即可求得答案.【详解】解:∵两个相似三角形的相似比为1,

∴这两个三角形的面积之比为2.

故答案为:2.【点睛】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.18、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.三、解答题(共66分)19、(1)见解析;(2).【解析】(1)连结OC,AC,由切线性质知Rt△ACP中DC=DA,即∠DAC=∠DCA,再结合∠OAC=∠OCA知∠OCD=∠OCA+∠DCA=∠OAC+∠DAC=90°,据此即可得证;

(2)先求出OA=1,BP=2AB=4,AD=,再根据S阴影=S四边形OADC-S扇形AOC即可得.【详解】(1)连结,如图所示:∵是⊙的直径,是切线,∴,,∵点是的中点,∴,∴,又∵,∴,∴,即,∴是⊙的切线;(2)∵在中,,∴,∴,∴,,,∴.【点睛】本题考查了切线的判定与性质,解题的关键是掌握切线的判定与性质、直角三角形的性质、扇形面积的计算等知识点.20、(1);(2).【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率==.【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.21、(1),;(2)x1=2,x2=-1.【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)提取公因式化为积的形式,然后利用两因式相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解.【详解】解:(1)方程整理得:,

配方得:,即,

开方得:,

解得:,;(2)方程变形得:,即,即或,解得.【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,并能结合实际情况选择合适的方法是解决此题的关键.22、(1)见解析;(2)1或-1【分析】(1)根据因式分解法求出方程的两个解,再证明这两个解不相等即可;(2)根据(1)中的两个解分类讨论即可.【详解】(1)证明:原方程可化为或,∵∴无论为何值,该方程都有两个不相等的实数根.(2)当时,解得:m=1,即方程的另一个根为1;当m=-1时,则另一个根为,∴另一个根为1或-1故答案为:1或-1.【点睛】此题考查的是解一元二次方程和根据一元二次方程的一个根求另一个根,掌握因式分解法解一元二次方程和分类讨论的数学思想是解决此题的关键.23、BC=16cm,AD=BD=10cm.【解析】利用圆周角定理及勾股定理即可求出答案.解:∵AB是⊙O的直径,∴∠ACB=90°,∴BC==16(cm);∵CD是∠ACB的平分线,∴,∴AD=BD,∴AD=BD=×AB=10(cm).24、(1)直角;(2)P(,);(3)0<x<1.【分析】(1)求出点A、B、C的坐标分别为:(-1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,即可求解;(2)点A关于函数对称轴的对称点为点B,则直线BC与对称轴的交点即为点P,即可求解;(3)由图象可得:y1>y2时,x的取值范围为:0<x<1.【详解】解:(1)当x=0时,y1=0+0+2=2,当y=0时,﹣x2+x+2=0,解得x1=-1,x2=1,∴点A、B、C的坐标分别为:(﹣1,0)、(1,0)、(0,2),则AB2=25,AC2=5,BC2=20,故AB2=AC2+BC2,故答案为:直角;(2)将点B、C的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论