




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是()A.10πm B.20πm C.10πm D.60m2.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是()A.①②③ B.①②④ C.①③④ D.③④3.下列方程没有实数根的是()A.x2﹣x﹣1=0 B.x2﹣6x+5=0 C.x2﹣2x+3=0 D.x2+x+1=04.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.5.如图,PA、PB、分别切⊙O于A、B两点,∠P=40°,则∠C的度数为()A.40° B.140° C.70° D.80°6.在中,,若,则的值为()A. B. C. D.7.已知正多边形的边心距与边长的比为,则此正多边形为()A.正三角形 B.正方形 C.正六边形 D.正十二边形8.函数y=3(x﹣2)2+4的图像的顶点坐标是()A.(3,4) B.(﹣2,4) C.(2,4) D.(2,﹣4)9.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.310.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,平分交于点,垂足为点,则__________.12.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点B、A、B1在同一条直线上,那么旋转角等于_____.13.如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为_____.14.在平面直角坐标系中,正方形ABCD的位置如图所示,点的坐标为,点的坐标为,延长交轴于点,作正方形,延长交轴于点,作正方形,…按这样的规律进行下去,第个正方形的面积为_____________.15.如图,从一块直径为的圆形纸片上剪出一个圆心角为的扇形,使点在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是________.16.设m,n分别为一元二次方程x2+2x-2020=0的两个实数根,则m2+3m+n=______.17.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.18.在本赛季比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.三、解答题(共66分)19.(10分)如图,是我市某大楼的高,在地面上点处测得楼顶的仰角为,沿方向前进米到达点,测得.现打算从大楼顶端点悬挂一幅庆祝建国周年的大型标语,若标语底端距地面,请你计算标语的长度应为多少?20.(6分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为.根据测得的数据,计算这座灯塔的高度(结果取整数).参考数据:,,.21.(6分)如图,在矩形ABCD中,AB=10cm,BC=20cm,两只小虫P和Q同时分别从A、B出发沿AB、BC向终点B、C方向前进,小虫P每秒走1cm,小虫Q每秒走2cm。请问:它们同时出发多少秒时,以P、B、Q为顶点的三角形与以A、B、C为顶点的三角形相似?22.(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;
(2)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)23.(8分)青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)24.(8分)岚山区地处黄海之滨,渔业资源丰富,海产品深受消费者喜爱.某海产品批发超市对进货价为40元/千克的某品牌小黄鱼的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式;(2)若不考虑其它因素,则销售总利润=每千克的利润×总销量,那么当销售价格定为多少时,该品牌小黄鱼每天的销售利润最大?最大利润是多少?25.(10分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.26.(10分)已知二次函数y1=x2﹣2x﹣3,一次函数y2=x﹣1.(1)在同一坐标系中,画出这两个函数的图象;(2)根据图形,求满足y1>y2的x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OA,OB,OC,根据切线的性质得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等边三角形,得到OA=AB=60,根据弧长的计算公式即可得到结论.【详解】解:连接OA,OB,OC,∵AC与BC是⊙O的切线,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=60,∴公路AB的长度==20πm,故选:B.【点睛】本题主要考察切线的性质及弧长,解题关键是连接OA,OB,OC推出△AOB是等边三角形.2、B【解析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设AD=x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E为DC的中点,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正确∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③错误.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.3、D【解析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△=-4ac的值的符号即可.【详解】解:A、∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等的实数根,故本选项错误;B、∵△=b2﹣4ac=36﹣20=16>0,∴方程有两个不相等的实数根,故本选项错误;C、∵△=b2﹣4ac=12﹣12=0,∴方程有两个相等的实数根,故本选项错误;D、∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,故本选项正确.故选:D.【点睛】本题考查根的判别式.一元二次方程的根与△=-4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.5、C【分析】连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.【详解】∵PA是圆的切线,∴同理根据四边形内角和定理可得:∴故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.6、C【分析】根据特殊角的三角函数值求出∠B,再求∠A,即可求解.【详解】在中,,若,则∠B=30°故∠A=60°,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.7、B【分析】边心距与边长的比为,即边心距等于边长的一半,进而可知半径与边心距的夹角是15度.可求出中心角的度数,从而得到正多边形的边数.【详解】如图,圆A是正多边形的内切圆;∠ACD=∠ABD=90°,AC=AB,CD=BD是边长的一半,当正多边形的边心距与边长的比为,即如图有AB=BD,则△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多边形的中心角是90度,所以它的边数=360÷90=1.故选:B.【点睛】本题利用了正多边形与它的内切圆的关系求解,转化为解直角三角形的计算.8、C【详解】函数y=3(x﹣2)2+4的图像的顶点坐标是(2,4)故选C.9、C【分析】观察表格可得0.04更接近于0,得到所求方程的近似根即可.【详解】解:观察表格得:方程x2+3x−5=0的一个近似根为1.2,故选:C.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.10、D【解析】试题解析:故选D.二、填空题(每小题3分,共24分)11、【分析】首先解直角三角形得出BC,然后根据判定DE∥AC,再根据平行线分线段成比例即可得出,再利用角平分线的性质,得出CE=DE,然后构建方程,即可得出DE.【详解】∵∴又∵∴DE∥AC∴又∵CD平分∴∠ACD=∠BCD=∠CDE=45°∴CE=DE∴∴故答案为.【点睛】此题主要考查利用平行线分线段成比例的性质构建方程,即可解题.12、180°【分析】根据旋转的性质可直接判定∠BAB1等于旋转角,由于点B、A、B1在同一条直线上,可知旋转角为180°.【详解】解:由旋转的性质定义知,∠BAB1等于旋转角,∵点B、A、B1在同一条直线上,∴∠BAB1为平角,∴∠BAB1=180°,故答案为:180°.【点睛】此题考查是旋转的性质,熟知图形旋转后所得图形与原图形全等是解答此题的关键.13、.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【详解】解:∵四边形是矩形∴,∵平分∴,且,,∴≌()∴,且∴,∴,∵,∴,∴故答案为.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.14、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n个正方形的边长,求出面积即可.【详解】∵四边形ABCD是正方形,
∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,
∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,
∴∠ADO=∠BAA1,
∵∠DOA=∠ABA1,
∴△DOA∽△ABA1,
∴,
∵AB=AD=∴BA1=∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积是;同理第3个正方形的边长是面积是;第4个正方形的边长是,面积是…,
第n个正方形的边长是,面积是故答案为:【点睛】本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目15、【分析】连接BC,根据圆周角定理求出BC是⊙O的直径,BC=12cm,根据勾股定理求出AB,再根据弧长公式求出半径r.【详解】连接BC,由题意知∠BAC=90°,∴BC是⊙O的直径,BC=12cm,∵AB=AC,∴,∴(cm),设这个圆锥的底面圆的半径是rcm,∵,∴,∴r=(cm),故答案为:.【点睛】此题考查圆周角定理,弧长公式,勾股定理,连接BC得到BC是圆的直径是解题的关键.16、2018.【解析】根据题意得.m2+3m+n=2020+m+n,再根据m,n分别为一元二次方程x2+2x-2020=0的两个实数根,得m+n=-2,带入m2+3m+n计算即可.【详解】解:∵m为一元二次方程x2+2x-2020=0的实数根,∴m2+2m-2020=0,即m2=-2m+2020,∴m2+3m+n=-2m+2020+3m+n=2020+m+n,∵m,n分别为一元二次方程x2+2x-2020=0的两个实数根,∴m+n=-2,∴m2+3m+n=2020-2=2018.【点睛】本题考查了一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.17、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.18、.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【详解】解:平均数=所以方差是S2==故答案为:.【点睛】本题考查方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(共66分)19、标语的长度应为米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC和△ADC.根据已知角的正切函数,可求得BC与AC、CD与AC之间的关系式,利用公共边列方程求AC后,AE即可解答.【详解】解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,∴Rt△ABC是等腰直角三角形,AC=BC.在Rt△ADC中,∠ACD=90°,tan∠ADC==,∴DC=AC,∵BC-DC=BD,即AC-AC=18,∴AC=45,则AE=AC-EC=45-15=1.答:标语AE的长度应为1米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.20、这座灯塔的高度约为45m.【分析】在Rt△ADC和Rt△BDC中,根据三角函数AD、BD就可以用CD表示出来,再根据就得到一个关于DC的方程,解方程即可.【详解】解:如图,根据题意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:这座灯塔的高度约为45m.【点睛】本题考查了解直角三角形的应用-----方向角的问题,列出关于CD的方程是解答本题的关键,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.21、2秒或者5【分析】由题意可知要使以P、B、Q为顶点的三角形与以A、B、C为顶点的三角形相似,则要分两种情况进行分析从而解得所需的时间.【详解】解:设他们行走的时间为x秒由题意得:AP=xcm,BQ=2x,BP=(10-x)因为∠PBQ=∠ABC,分两种情况:当时,,解得,当时,,解得,答:出发2秒或者5秒时相似.【点睛】本题考查相似三角形的判定及矩形的性质等知识点的综合运用,运用数形结合思维分析是解题的关键,注意分情况讨论求解.22、(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【分析】(1)根据众数、中位数的定义求解即可;
(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;
(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;
在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;
故答案为8,6和9;
(2)甲的平均数是:(7+8+8+8+9)÷5=8,
则甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,
乙的平均数是:(6+6+9+9+10)÷5=8,
则甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,
所以甲的成绩比较稳定;
(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.
故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.23、灰太狼秒钟后能抓到懒羊羊【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.24、(1)y=-2x+140;(2)当该种小黄鱼销售价定为55元/千克时,每天的销售利润有最大值1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校电取暖管理制度
- 学校舍安全管理制度
- 学生上安全管理制度
- 安保市卫生管理制度
- 安全警示牌管理制度
- 安设部各项管理制度
- 定量包装称管理制度
- 实训室药品管理制度
- 审稿及校对管理制度
- 客货邮运输管理制度
- 云硫矿业招聘试题及答案
- (2025)学习《中华人民共和国监察法》知识试题库(附含答案)
- GB/T 14598.2-2025量度继电器和保护装置第1部分:通用要求
- 重庆市渝北区2023-2024学年七年级下学期期末语文试题(解析版)
- JG/T 313-2014额定电压0.6/1kV及以下金属护套无机矿物绝缘电缆及终端
- DB13T 1349-2010 超贫磁铁矿勘查技术规范
- 2024年上海市研发公共服务平台管理中心招聘笔试真题
- T/CSBME 050-2022宫颈液基细胞人工智能医疗器械质量要求和评价第1部分:数据集要求
- 时尚饮品店场地租赁与饮品品牌入驻合同
- 《大学生职业生涯发展与规划》电子教案-第六章 工作世界探索
- 河南省TOP二十名校2025届高三猜题大联考物理试题(含答案)
评论
0/150
提交评论