版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A. B. C. D.2.已知,是抛物线上两点,则正数()A.2 B.4 C.8 D.163.已知方程的两根为,则的值是()A.1 B.2 C.-2 D.44.如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是()A.经过点B和点E B.经过点B,不一定经过点EC.经过点E,不一定经过点B D.不一定经过点B和点E5.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.已知一次函数与反比例函数的图象有2个公共点,则的取值范围是()A. B. C.或 D.7.在▱ABCD中,∠ACB=25°,现将▱ABCD沿EF折叠,使点C与点A重合,点D落在G处,则∠GFE的度数()A.135° B.120° C.115° D.100°8.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.89.如图所示的几何体,它的俯视图是()A. B.C. D.10.要使方程是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠3且b≠-1 D.a≠3且b≠-1且c≠0二、填空题(每小题3分,共24分)11.一枚质地均匀的骰子,六个面分别标有数字1,2,3,4,5,6,抛掷一次,恰好出现“正面朝上的数字是5”的概率是___________.12.如图,建筑物BC上有一旗杆AB,从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为__________m.(结果取整数.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O也随之运动,则点O经过的路径长为_____.14.已知点和关于原点对称,则a+b=____.15.如图是一个正方形及其内切圆,正方形的边长为4,随机地往正方形内投一粒米,落在圆内的概率是______.16.若某人沿坡度i=3∶4的斜坡前进10m,则他比原来的位置升高了_________m.17.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.18.设分别为一元二次方程的两个实数根,则______.三、解答题(共66分)19.(10分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.(1)求二次函数G1的解析式;(2)当﹣1<x<2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是.(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.20.(6分)初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?21.(6分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.22.(8分)4月23日,为迎接“世界读书日”,某书城开展购书有奖活动.顾客每购书满100元获得一次摸奖机会,规则为:一个不透明的袋子中装有4个小球,小球上分别标有数字1,2,3,4,它们除所标数字外完全相同,摇匀后同时从中随机摸出两个小球,则两球所标数字之和与奖励的购书券金额的对应关系如下:两球所标数字之和34567奖励的购书券金额(元)00306090(1)通过列表或画树状图的方法计算摸奖一次获得90元购书券的概率;(2)书城规定:如果顾客不愿意参加摸奖,那么可以直接获得30元的购书券.在“参加摸奖”和“直接获得购书券”两种方式中,你认为哪种方式对顾客更合算?请通过求平均教的方法说明理由.23.(8分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?24.(8分)在Rt△ABC中,∠C=90°,AC=,BC=.解这个直角三角形.25.(10分)某区为创建《国家义务教育优质均衡发展区》,自2016年以来加大了教育经费的投入,2016年该区投入教育经费9000万元,2018年投入教育经费12960万元,假设该区这两年投入教育经费的年平均增长率相同(1)求这两年该区投入教育经费的年平均增长率(2)若该区教育经费的投入还将保持相同的年平均增长率,请你预算2019年该区投入教育经费多少万元26.(10分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞201.6第2次捕捞152.0第3次捕捞151.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x-1)场,再根据题意列出方程为.【详解】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,
∴共比赛场数为,
故选:A.【点睛】本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.2、C【分析】根据二次函数的对称性可得,代入二次函数解析式即可求解.【详解】解:∵,是抛物线上两点,∴,∴且n为正数,解得,故选:C.【点睛】本题考查二次函数的性质,掌握二次函数的性质是解题的关键.3、A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x1+x2,x1•x2,代入求出即可.【详解】∵2x2﹣3x=1,∴2x2﹣3x﹣1=0,由根与系数的关系得:x1+x2,x1•x2,所以x1+x1x2+x2()=1.故选:A.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.4、B【分析】由条件可知BC垂直平分AD,可证△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°则A、B、D、C四点共圆,即可得结论.【详解】解:如图:设AD、BC交于M∵AC=CD,AD⊥BC∴M为AD中点∴BC垂直平分AD∴AB=DB∵BC=BC,AC=CD∴△ABC≌△DBC∴∠BAC=∠BDC=90°∴∠BAC+∠BDC=180°∴A、B、D、C四点共圆∴优弧CAD经过B,但不一定经过E故选B【点睛】本题考查了四点共圆,掌握四点共圆的判定是解题的关键.5、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.6、C【分析】将两个解析式联立整理成关于x的一元二次方程,根据判别式与根的关系进行解题即可.【详解】将代入到中,得,整理得∵一次函数与反比例函数的图象有2个公共点∴方程有两个不相等的实数根所以解得或故选C.【点睛】本题考查的是一次函数与反比例函数图像交点问题,能用函数的思想思考问题是解题的关键.7、C【详解】解:根据图形的折叠可得:AE=EC,即∠EAC=∠ECA=25°,∠FEC=∠AEF,∠DFE=∠GFE,又∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=130°,∴∠FEC=65°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DFE+∠FEC=180°,∴∠DFE=115°,∴∠GFE=115°,故选C.考点:1.平行四边形的性质2.图形的折叠的性质.8、D【解析】试题解析:袋中球的总个数是:2÷=8(个).故选D.9、D【分析】根据俯视图的确定方法,找到从上面看所得到的图形即是所求图形.【详解】从几何体上面看,有三列,第一列2个,第二列1个位于第2层,第三列1个位于第2层.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10、B【分析】根据一元二次方程的定义选出正确选项.【详解】解:∵一元二次方程二次项系数不能为零,∴,即.故选:B.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.二、填空题(每小题3分,共24分)11、【分析】“正面朝上的数字是5”的情况数除以总情况数6即为所求的概率.【详解】解:∵抛掷六个面上分别标有数字1,2,3,4,5,6的骰子共有6种结果,其中“正面朝上的数字是5”的只有1种,
∴“正面朝上的数字是5”的概率为,
故答案为:.【点睛】此题主要考查了概率公式的应用,概率等于所求情况数与总情况数之比.12、1【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【详解】解:由题意,CD=10,∠BDC=45°,∠ADC=51°,在Rt△BCD中,tan∠BDC=,则BC=CD•tan45°=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.11=11.1,∴AB=AC-BC=1.1≈1(m),故答案为:1.【点睛】本题考查的是解直角三角形的应用——仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.13、【分析】根据等边三角形的外心性质,根据特殊角的三角函数即可求解.【详解】解:如图,作BG⊥AC、CF⊥AB于点G、F,交于点I,则点I是等边三角形ABC的外心,∵等边三角形ABC的边长为4,∴AF=BF=2∠IAF=30°∴AI=∵点P是AB边上的一个动点,O是等边三角形△EPD的外心,∴当点P从点A运动到点B的过程中,点O也随之运动,点O的经过的路径长是AI的长,∴点O的经过的路径长是.故答案为:.【点睛】本题考查等边三角形的外心性质,关键在于熟悉性质,结合图形计算.14、【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得a-1+2=0,b-1+1=0,再解方程即可求得a、b的值,再代入计算即可.【详解】∵点和关于原点对称,∴a-1+2=0,b-1+1=0,∴a=-1,b=0,∴a+b=-1.故答案是:-1.【点睛】考查了关于原点对称的点的坐标特点,解题关键是运用了两个点关于原点对称时,它们的坐标符号相反.15、【分析】根据题意算出正方形的面积和内切圆面积,再利用几何概率公式加以计算,即可得到所求概率.【详解】解:∵正方形的边长为4,
∴正方形的面积S正方形=16,内切圆的半径r=2,
因此,内切圆的面积为S内切圆=πr2=4π,可得米落入圆内的概率为:故答案为:【点睛】本题考查几何概率、正多边形和圆,解答本题的关键是明确题意,属于中档题.16、1.【详解】解:如图:由题意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案为:1【点睛】本题考查解直角三角形的应用-坡度坡角问题.17、1【分析】根据题意求出△ABC的周长,根据相似三角形的性质列式计算即可.【详解】解:设△DEF的周长别为x,△ABC的三边长分别为4、5、6,∴△ABC的周长=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.18、1【分析】先根据m是的一个实数根得出,利用一元二次方程根与系数的关系得出,然后对原式进行变形后整体代入即可得出答案.【详解】∵m是一元二次方程的一个实数根,∴,即.由一元二次方程根与系数的关系得出,∴.故答案为:1.【点睛】本题主要考查一元二次方程的根及根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.三、解答题(共66分)19、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为y=﹣x2+2x+3;(2)将解析式化为顶点式,即y=﹣(x﹣1)2+4,当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为y=﹣x2+2x+3;(2)因为y=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2.(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【点睛】本题的考点是二次函数的综合应用.方法是根据题意及二次函数图像的性质解题.20、(1)y=−(x−4)2+4;能够投中;(2)能够盖帽拦截成功.【分析】(1)根据题意可知:抛物线经过(0,),顶点坐标是(4,4),然后设出抛物线的顶点式,将(0,)代入,即可求出抛物线的解析式,然后判断篮圈的坐标是否满足解析式即可;(2)当时,求出此时的函数值,再与3.1m比较大小即可判断.【详解】解:由题意可知,抛物线经过(0,),顶点坐标是(4,4).设抛物线的解析式是,将(0,)代入,得解得,所以抛物线的解析式是;篮圈的坐标是(7,3),代入解析式得,∴这个点在抛物线上,∴能够投中答:能够投中.(2)当时,<3.1,所以能够盖帽拦截成功.答:能够盖帽拦截成功.【点睛】此题考查的是二次函数的应用,掌握二次函数的顶点式和利用二次函数解析式解决实际问题是解决此题的关键.21、(1)(2)当0<t≤2时,S=,当2<t≤5时,S=,当5<t<7时,S=t2﹣14t+1.【分析】(1)由图象可得当t=2时,点O与点B重合,当t=m时,△AOB在△BDC内部,可求点B坐标,过点D作DH⊥BC,可证四边形AOHD是矩形,可得AO=DH,AD=OH,由勾股定理可求BD的长,即可得点D坐标;(2)分三种情况讨论,由相似三角形的性质可求解.【详解】解:(1)由图象可得当t=2时,点O与点B重合,∴OB=1×2=2,∴点B(2,0),如图1,过点D作DH⊥BC,由图象可得当t=m时,△AOB在△BDC内部,∴4=×2×DH,∴DH=4,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,且DH⊥BC,∴∠ADH=∠DHO=90°,且∠AOB=90°,∴四边形AOHD是矩形,∴AO=DH,AD=OH,且AD=BC=BD,∴OH=BD,∵DB2=DH2+BH2,∴DB2=(DB﹣2)2+16,∴DB=5,∴AD=BC=OH=5,∴点D(5,4),故答案为:(2,0),(5,4);(2)∵OH=BD=BC=5,OB=2,∴m=,n==7,当0<t≤2时,如图2,∵S△BCD=BC×DH,∴S△BCD=10∵A'B'∥CD,∴△BB'E∽△BCD,∴=()=,∴S=10×=t2,当2<t≤5,如图3,∵OO'=t,∴BO'=t﹣2,FO'=(t﹣2),∵S=S△BB'E﹣S△BO'F=t2﹣×(t﹣2)2,∴S=﹣t2+t﹣;当5<t<7时,如图4,∵OO'=t,∴O'C=7﹣t,O'N=2(7﹣t),∵S=×O'C×O'N=×2(7﹣t)2,∴S=t2﹣14t+1.【点睛】本题考查二次函数性质,相似三角形的判定及性质定理,根据实际情况要分分段讨论利用相似三角形的性质求解是解题的关键.22、(1);(2)在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算,理由见解析.【分析】(1)根据题意,列出表格,然后利用概率公式求概率即可;(2)先根据(1)中表格计算出两球数字之和的各种情况对应的概率,然后计算出摸球一次平均获得购书券金额,最后比较大小即可判断.【详解】解:(1)列表如下:第1球第2球12341234由上表可知,共有12种等可能的结果.其中“两球数字之和等于7”有2种,∴(获得90元购书券).(2)由(1)中表格可知,两球数字之和的各种情况对应的概率如下:数字之和34567获奖金额(元)00306090相应的概率∴摸球一次平均获得购书券金额为元∵,∴在“参加摸球”和“直接获得购书券”两种方式中,我认为选择“参加摸球”对顾客更合算.【点睛】此题考查的是求概率问题,掌握用列表法和概率公式求概率是解决此题的关键.23、(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x元,台灯将少售出10x,那么利润为(40+x-30)(600-10x)=10000,解方程即可;
(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了元,依题意得:,化简得:,解得:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版小学一年级上册英语教学工作总结
- 2024【商标许可使用协议】商标使用许可合同范本
- 物流中心机房监控室安全实施方案
- 吉林大学《互联网+智能机器创新创业实践》2021-2022学年期末试卷
- 科技企业红色文化创新活动方案
- 垃圾填埋场人工挖孔桩施工方案
- 2024-2025学年新教材高中地理第三章产业区位选择1农业区位因素课时作业含解析中图版必修2
- 2024年物理高考二轮复习交变电流图像类选择题作业含解析
- 2025版高考语文一轮复习板块2新高考模式下的文学性阅读专题1考题研析第1讲把握小说要素准解综合选择题教案
- 2024高考地理一轮复习课时规范练28交通运输布局及其对区域发展的影响含解析湘教版
- 警方开展心理辅导活动方案
- 餐厅股份合作协议书
- 成人重症患者人工气道湿化护理专家共识
- 医疗废弃物培训
- 朝花夕拾读书分享会
- 心肌病和心肌炎课件
- 突发事件应急处理知识培训
- 糖尿病专科护士考试试题
- 录音行业的就业生涯发展报告
- 人工智能概论-人工智能概述
- 乡村旅游财务分析策划方案
评论
0/150
提交评论