版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知,则的值是()A. B. C. D.2.已知、是一元二次方程的两个实数根,则的值为()A.-1 B.0 C.1 D.23.﹣2的绝对值是()A.2 B. C. D.4.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.7 B. C. D.5.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是()A. B. C. D.6.如图所示的几何体的左视图为()A. B. C. D.7.如图所示的几何体的俯视图是()A. B. C. D.8.在半径为的圆中,挖出一个半径为的圆面,剩下的圆环的面积为,则与的函数关系式为()A. B. C. D.9.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x2+2x+1 C.x2﹣2x+1 D.x(x﹣2)﹣(x﹣2)10.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.3011.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A. B. C. D.12.如图,点C在弧ACB上,若∠OAB=20°,则∠ACB的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.14.计算:=_____________15.在Rt△ABC中,∠C=90°,tanA=,△ABC的周长为18,则S△ABC=____.16.在相同时刻,物高与影长成正比.在某一晴天的某一时刻,某同学测得他自己的影长是2.4m,学校旗杆的影长为13.5m,已知该同学的身高是1.6m,则学校旗杆的高度是_____.17.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同,则该商品每次降价的百分率为_____.18.点(﹣1,)、(2,)是直线上的两点,则(填“>”或“=”或“<”)三、解答题(共78分)19.(8分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)20.(8分)如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.21.(8分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.22.(10分)如图,为的直径,平分,交于点,过点作直线,交的延长线于点,交的延长线于点(1)求证:是的切线(2)若,,求的长23.(10分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)24.(10分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.25.(12分)如图,点在上,,交于点,点为射线上一动点,平分,连接.(1)求证:;(2)连接,若,则当_______时,四边形是矩形.26.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
参考答案一、选择题(每题4分,共48分)1、A【解析】设a=k,b=2k,则.故选A.2、C【分析】根据根与系数的关系即可求出的值.【详解】解:∵、是一元二次方程的两个实数根∴故选C.【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=是解决此题的关键.3、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.4、C【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值为,∴点H的纵坐标a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴点H的横坐标b=,∴a+b=;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.5、D【分析】根据对角线互相平分的四边形是平行四边形可得四边形是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【详解】解:∵在四边形中,,∴四边形是平行四边形若添加,则四边形是矩形,故A不符合题意;若添加,则四边形是矩形,故B不符合题意;若添加,与菱形的对角线互相垂直相矛盾,故C不符合题意;若添加则四边形是菱形,故D符合题意.故选D.【点睛】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.6、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.7、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.8、D【分析】根据圆环的面积=大圆的面积-小圆的面积,即可得出结论.【详解】解:根据题意:y=故选D.【点睛】此题考查的是圆环的面积公式,掌握圆环的面积=大圆的面积-小圆的面积是解决此题的关键.9、B【分析】原式各项分解后,即可做出判断.【详解】A、原式=(x+1)(x-1),含因式x-1,不合题意;
B、原式=(x+1)2,不含因式x-1,符合题意;
C、原式=(x-1)2,含因式x-1,不合题意;
D、原式=(x-2)(x-1),含因式x-1,不合题意,
故选:B.【点睛】此题考查因式分解-运用公式法,提公因式法,熟练掌握因式分解的方法是解题的关键.10、D【详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.11、D【解析】首先利用直径所对的圆周角为90°得到△ABD是直角三角形,然后利用勾股定理求得AD边的长,然后求得∠B的正弦即可求得答案.【详解】∵AB是直径,∴∠ADB=90°,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B=∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选D.【点睛】本题考查了圆周角定理及解直角三角形的知识,解题的关键是能够得到直角三角形并利用锐角三角函数求得一个锐角的正弦值,难度不大.12、C【分析】根据圆周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度数.【详解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故选:C.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.二、填空题(每题4分,共24分)13、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.14、-1【分析】根据二次根式的性质和负整数指数幂的运算法则进行计算即可.【详解】故答案为:-1.【点睛】此题主要考查了二次根式的性质以及负整数指数幂的运算法则,熟练掌握其性质和运算法则是解此题的关键.15、【解析】根据正切函数是对边比邻边,可得a、b的值,根据勾股定理,可得c根据周长公式,可得x的值,根据三角形的面积公式,可得答案.【详解】由在Rt△ABC中,∠C=90°,tanA=,得a=5x,b=12x.由勾股定理,得c==13x.由三角形的周长,得5x+12x+13x=18,解得x=,a=3,b=.S△ABC=ab=×3×=.故答案为:.【点睛】本题考查了解直角三角形,利用正切函数表示出a=5x,b=12x是解题关键.16、9米【分析】由题意根据物高与影长成比例即旗杆的高度:13.5=1.6:2.4,进行分析即可得出学校旗杆的高度.【详解】解:∵物高与影长成比例,∴旗杆的高度:13.5=1.6:2.4,∴旗杆的高度==9米.故答案为:9米.【点睛】本题考查相似三角形的应用,解题的关键是理解题意,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程并通过解方程求出旗杆的高度.17、10%【解析】设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1-降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论.【详解】设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.故答案为:10%【点睛】本题考查了一元二次方程的应用,解题的关键是根据数量关系得出关于x的一元二次方程.18、<.【解析】试题分析:∵k=2>0,y将随x的增大而增大,2>﹣1,∴<.故答案为<.考点:一次函数图象上点的坐标特征.三、解答题(共78分)19、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:,∴,∴木杆折断之前高度故答案为m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.20、(1)证明见解析;(2)40°.【分析】(1)连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠ABE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).22、(1)证明见解析;(2)6【分析】(1)要证CD是⊙O的切线,只要连接OE,再证OE⊥CD即可.
(2)由勾股定理求得AB的长即可.【详解】证明:(1)如图,连接OE,∵OA=OE,∴∠OAE=∠OEA.∵AE平分∠CAD,∴∠OAE=∠DAE.∴∠OEA=∠DAE.∴OE∥AD.∵DE⊥AD,∴OE⊥DE.∵OE为半径,∴CD是⊙O的切线.(2)设⊙O的半径是r,∵CD是⊙O的切线,∴∠OEC=90°.由勾股定理得:OE2+CE2=OC2,即,解得r=3,即AB的长是6【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了勾股定理,作出辅助线是本题的关键.23、见解析【分析】作线段AB的垂直平分线即可得到AB的中点D.【详解】如图,作线段AB的垂直平分线即可得到AB的中点D.【点睛】此题考查作图能力,作线段的垂直平分线,掌握画图方法是解题的关键.24、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm.【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为xcm,∴y=10×x+1×11•x﹣1×x•x=﹣3x1+54x,即y与x之间的函数关系式为y=﹣3x1+54x;(1)根据题意,得:﹣3x1+54x=×10×11,整理,得:x1﹣18x+31=0,解得:x1=1,x1=16
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业生态保护承包协议3篇
- 专项2024进出口贸易合作劳动协议版A版
- 专业防水服务协议规范版B版
- 专业土方买卖协议指导文本(2024版)版B版
- 专业方木买卖:2024年协议范本一
- 2025年度历史文化街区拆迁承包合同4篇
- 2025年度展览馆场地借用及展览策划服务合同4篇
- 二零二四商标权转让与市场推广服务合同范本3篇
- 二零二五年度文化产业园项目合作协议3篇
- 不动产居间服务协议模板2024版B版
- 建筑保温隔热构造
- 智慧财务综合实训
- 安徽省合肥市2021-2022学年七年级上学期期末数学试题(含答案)3
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
- 肝脏肿瘤护理查房
- 护士工作压力管理护理工作中的压力应对策略
- 2023年日语考试:大学日语六级真题模拟汇编(共479题)
- 皮带拆除安全技术措施
- ISO9001(2015版)质量体系标准讲解
- 《培训资料紧固》课件
- 黑龙江省政府采购评标专家考试题
评论
0/150
提交评论