2023届湖北省武汉市蔡甸区求新联盟数学九年级第一学期期末统考模拟试题含解析_第1页
2023届湖北省武汉市蔡甸区求新联盟数学九年级第一学期期末统考模拟试题含解析_第2页
2023届湖北省武汉市蔡甸区求新联盟数学九年级第一学期期末统考模拟试题含解析_第3页
2023届湖北省武汉市蔡甸区求新联盟数学九年级第一学期期末统考模拟试题含解析_第4页
2023届湖北省武汉市蔡甸区求新联盟数学九年级第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°2.下列方程中,是关于x的一元二次方程是()A. B.x2+2x=x2﹣1C.ax2+bx+c=0 D.3(x+1)2=2(x+1)3.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57° B.66° C.67° D.44°4.直线与抛物线只有一个交点,则的值为()A. B. C. D.5.如图,矩形矩形,连结,延长分别交、于点、,延长、交于点,一定能求出面积的条件是()A.矩形和矩形的面积之差 B.矩形和矩形的面积之差C.矩形和矩形的面积之差 D.矩形和矩形的面积之差6.用一个平面去截一个圆锥,截面的形状不可能是()A.圆 B.矩形 C.椭圆 D.三角形7.如图,在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm8.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=86°,则∠BCD的度数是()A.86° B.94° C.107° D.137°9.要使有意义,则x的取值范围为()A.x≤0 B.x≥-1 C.x≥0 D.x≤-110.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,,DE=6,则BC的长为()A.8 B.9 C.10 D.12二、填空题(每小题3分,共24分)11.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.12.如图,把△ABC绕点C顺时针旋转得到△A'B'C',此时A′B′⊥AC于D,已知∠A=50°,则∠B′CB的度数是_____°.13.一元二次方程的两根为,,则的值为____________.14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.15.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.16.如图,O为Rt△ABC斜边中点,AB=10,BC=6,M、N在AC边上,若△OMN∽△BOC,点M的对应点是O,则CM=______.17.如图,⊙的半径于点,连接并延长交⊙于点,连接.若,则的长为___.18.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.三、解答题(共66分)19.(10分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm20.(6分)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).21.(6分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?23.(8分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.(8分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.(1)求的值;(2)若,求直线的解析式;(3)若,其它条件不变,直接写出与的位置关系.25.(10分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?26.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.2、D【解析】利用一元二次方程的定义判断即可.【详解】A、=3不是整式方程,不符合题意;B、方程整理得:2x+1=0,是一元一次方程,不符合题意;C、ax2+bx+c=0没有条件a≠0,不一定是一元二次方程,不符合题意;D、3(x+1)2=2(x+1)是一元二次方程,符合题意,故选:D.【点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.3、A【分析】由圆周角定理定理得出∠AOC,再由等腰三角形的性质得到答案.【详解】解:∵∠AOC与∠ADC分别是弧AC对的圆心角和圆周角,

∴∠AOC=2∠ADC=66°,在△CAO中,AO=CO,∴∠ACO=∠OAC=,故选:A【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用.4、D【分析】直线y=-4x+1与抛物线y=x2+2x+k只有一个交点,则把y=-4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【详解】根据题意得:x2+2x+k=-4x+1,

即x2+6x+(k-1)=0,

则△=36-4(k-1)=0,

解得:k=1.

故选:D.【点睛】本题考查了二次函数与一次函数的交点个数的判断,把一次函数代入二次函数的解析式,得到的关于x的方程中,判别式△>0,则两个函数有两个交点,若△=0,则只有一个交点,若△<0,则没有交点.5、B【分析】根据相似多边形的性质得到,即AF·BC=AB·AH①.然后根据IJ∥CD可得,,再结合以及矩形中的边相等可以得出IJ=AF=DE.最后根据S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE②,结合①②可得出结论.【详解】解:∵矩形ABCD∽矩形FAHG,,∴AF·BC=AB·AH,又IJ∥CD,∴,又DC=AB,BJ=AH,∴,∴IJ=AF=DE.S△BIJ=BJ·IJ=BJ·DE=(BC-DH)·DE=BC·AF-DH·DE=AB·AH-DH·DE=(S矩形ABJH-S矩形HDEG).∴能求出△BIJ面积的条件是知道矩形ABJH和矩形HDEG的面积之差.故选:B.【点睛】本题考查了相似多边形的性质,矩形的性质等知识,正确的识别图形及运用相关性质是解题的关键.6、B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A可能;截面不可能是矩形,故B符合题意;斜截且与底面不相交的截面是椭圆,故C可能;过圆锥的顶点的截面是三角形,故D可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.7、C【详解】已知sinA=,设BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案选C.8、D【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).9、B【分析】根据二次根式有意义有条件进行求解即可.【详解】要使有意义,则被开方数要为非负数,即,∴,故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.10、C【解析】根据相似三角形的性质可得,再根据,DE=6,即可得出,进而得到BC长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,又∵,DE=6,∴,∴BC=10,故选:C.【点睛】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.二、填空题(每小题3分,共24分)11、140°.【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.12、1【分析】由旋转的性质可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠ACA'=1°=∠B′CB.【详解】解:∵把△ABC绕点C顺时针旋转得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案为1.【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.13、2【解析】根据一元二次方程根的意义可得+2=0,根据一元二次方程根与系数的关系可得=2,把相关数值代入所求的代数式即可得.【详解】由题意得:+2=0,=2,∴=-2,=4,∴=-2+4=2,故答案为2.【点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.14、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,

,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.15、1.【详解】解:设圆锥的底面圆半径为r,根据题意得1πr=,解得r=1,即圆锥的底面圆半径为1cm.故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16、【分析】根据直角三角形斜边中线的性质可得OC=OA=OB=AB,根据等腰三角形的性质可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性质可得∠ONC=∠OCB,,可得OM=MN,利用等量代换可得∠ONC=∠B,即可证明△CNO∽△ABC,利用外角性质可得∠ACO=∠MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】∵O为Rt△ABC斜边中点,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.17、【详解】解:连接BE∵⊙的半径,AB=2∴且,若设⊙的半径为,则.在△ACO中,根据勾股定理有,即,解得:.∴.∵是⊙的直径,∴.故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.18、【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【详解】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为16.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.三、解答题(共66分)19、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.20、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则.考点:图形的旋转、扇形的弧长计算公式.21、(1)y=﹣2x2+4x+6;(2)①当x<1时,y随x的增大而增大;②当﹣1<x<3时,y>1【分析】(1)根据二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),可以求得该抛物线的解析式;(2)①根据(1)求得函数解析式,将其化为顶点式,然后根据二次函数的性质即可得到x在什么范围内时,y随x的增大而增大;②根据(1)中的函数解析式可以得到x在什么范围内时,y>1.【详解】(1)∵二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),∴,得,即该二次函数的解析式为y=﹣2x2+4x+6;(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴该函数的对称轴是x=1,函数图象开口向下,∴当x<1时,y随x的增大而增大;②当y=1时,1=﹣2x2+4x+6=﹣2(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴当﹣1<x<3时,y>1.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据待定系数法求出二次函数的解析式..22、(1)y=60+10x;(2)定价为33元,最大利润是810元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;

(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y=60+10x,(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.【点睛】本题主要考查二次函数的应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.23、【分析】根据题意画出树状图,然后结合概率的计算公式求解即可.【详解】解:画树状图如下:由树状图可知,共有12种等可能结果,其中能围成三角形的结果共有10种,所以能搭成三角形的概率为=.【点睛】本题考查了三角形三条边的关系及概率的计算,,解题的关键是正确画出树状图,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.24、(1);

(2);(3)

BC∥AD.【分析】(1)将点A(-4,1)代入,求的值;(2)作辅助线如下图,根据和CH=AE,点D的纵坐标,代入方程求出点D的坐标,假设直线的解析式,代入A、D两点即可;(3)代入B(0,1),C(2,0)求出直线BC的解析式,再与直线AB的解析式作比较,得证BC∥AD.【详解】(1)∵反比例函数的图象经过点A(-4,1),∴(2)

如图,∵

∴∴DH=3∵CH=AE=1∴CD=2∴点D的纵坐标为﹣2,把代入得:∴点D的坐标是(2,﹣2)设:,则∴∴直线AD的解析式是:(3)

由题(2)得B(0,1),C(2,0)设:,则解得∴∵∴BC∥AD【点睛】本题考查了反比例函数的应用以及两直线平行的判定,掌握反比例函数的性质以及两直线平行的判定定理是解题的关键.25、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤1.【分析】(1)根据题目已知条件,可以判定销量与售价之间的关系式为一次函数,并可以进一步写出二者之间的关系式;然后根据单位利润等于单位售价减单位成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论