版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各组图形中,两个图形不一定是相似形的是()A.两个等边三角形 B.有一个角是的两个等腰三角形C.两个矩形 D.两个正方形2.如图,在⊙O中,AB为直径,CD为弦,∠CAB=50°,则∠ADC=()A.25° B.30° C.40° D.50°3.如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A. B.C. D.4.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.5.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.56.下列几何体的左视图为长方形的是()A. B. C. D.7.我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是()A.①③ B.①④ C.②③ D.②④8.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.9.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm10.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形二、填空题(每小题3分,共24分)11.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.12.如图,有一斜坡,坡顶离地面的高度为,斜坡的倾斜角是,若,则此斜坡的为____m.13.关于x的方程的两个根是﹣2和1,则nm的值为_____.14.如图,直线分别交轴,轴于点A和点B,点C是反比例函数的图象上位于直线下方的一点,CD∥轴交AB于点D,CE∥轴交AB于点E,,则的值为______15.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.16.一个不透明的口袋中装有个红球和个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为__________.17.如图所示的两个四边形相似,则的度数是.18.已知方程的两实数根的平方和为,则k的值为____.三、解答题(共66分)19.(10分)已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MN•MD.20.(6分)如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.21.(6分)抛物线与轴交于两点(点在点的左侧),且,,与轴交于点,点的坐标为(0,-2),连接,以为边,点为对称中心作菱形.点是轴上的一个动点,设点的坐标为,过点作轴的垂线交抛物线与点,交于点.(1)求抛物线的解析式;(2)轴上是否存在一点,使三角形为等腰三角形,若存在,请直接写出点的坐标;若不存在,请说明理由;(3)当点在线段上运动时,试探究为何值时,四边形是平行四边形?请说明理由.22.(8分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.23.(8分)如图,是的直径,是的切线,切点为,交于点,点是的中点.(1)试判断直线与的位置关系,并说明理由;(2)若的半径为2,,,求图中阴影部分的周长.24.(8分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.25.(10分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.26.(10分)小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①若木杆的长为,则其影子的长为;②在同一时刻同一地点,将另一根木杆直立于地面,请画出表示此时木杆在地面上影子的线段;(2)如图2,夜晚在路灯下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①请在图中画出表示路灯灯泡位置的点;②若木杆的长为,经测量木杆距离地面,其影子的长为,则路灯距离地面的高度为.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A正确;B、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B正确;C、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C错误;D、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D正确.故选:C.【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.2、C【分析】先推出∠ABC=40°,根据同弧所对的圆周角相等,可得∠ABC=∠ADC=40°,即可得出答案.【详解】解:∵AB为直径,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=40°,∵,∴∠ABC=∠ADC=40°,故选:C.【点睛】本题考查了直径所对的圆周角是90°,同弧所对的圆周角相等,推出∠ABC=90°是解题关键.3、C【解析】在半径AO上运动时,s=OP1=t1;在弧BA上运动时,s=OP1=4;在BO上运动时,s=OP1=(4π+4-t)1,s也是t是二次函数;即可得出答案.【详解】解:利用图象可得出:当点P在半径AO上运动时,s=OP1=t1;在弧AB上运动时,s=OP1=4;在OB上运动时,s=OP1=(1π+4-t)1.结合图像可知C选项正确故选:C.【点睛】此题考查了动点问题的函数图象,能够结合图形正确得出s与时间t之间的函数关系是解决问题的关键.4、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.5、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.6、C【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论.详解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选C.点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形.7、D【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D.【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键8、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.9、D【解析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.10、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.二、填空题(每小题3分,共24分)11、x=﹣1【分析】所求方程ax+b=0的解,即为函数y=ax+b图像与x轴交点横坐标,根据已知条件中点B即可确定.【详解】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.12、1.【分析】由三角函数定义即可得出答案.【详解】解:∵,,∴;故答案为:1.【点睛】本题考查了解直角三角形的应用;熟练掌握三角函数定义是解题的关键.13、﹣1【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入nm中即可求出结论.【详解】解:∵关于x的方程的两个根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案为:﹣1.【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.14、【分析】过作于,过作于,由CD∥轴,CE∥轴,得利用三角形相似的性质求解建立方程求解,结合的几何意义可得答案.【详解】.解:过作于,过作于,CD∥轴,CE∥轴,直线分别交轴,轴于点A和点B,点,把代入得:同理:把代入得:,同理:故答案为;.【点睛】本题考查的是反比例函数的系数的几何意义,同时考查了一次函数的性质,勾股定理的应用,相似三角形的判定与性质,掌握以上知识是解题的关键.15、(—2,1)或(2,—1)【分析】根据位似图形的性质,只要点A的横、纵坐标分别乘以或﹣即可求出结果.【详解】解:∵点A(-6,3),B(9,0),以原点O为位似中心,相似比为把△ABO缩小,∴点A对应点的坐标为(—2,1)或(2,—1).故答案为:(—2,1)或(2,—1).【点睛】本题考查了位似图形的性质,属于基本题型,注意分类、掌握求解的方法是关键.16、【分析】直接利用概率公式求解即可求得答案.【详解】∵一个不透明的口袋中装有3个红球和9个黄球,这些球除了颜色外无其他差别,
∴从中随机摸出一个小球,恰好是红球的概率为:.故答案为:.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17、.【解析】由两个四边形相似,根据相似多边形的对应角相等,即可求得∠A的度数,又由四边形的内角和等于360°,即可求得∠α的度数.【详解】解:∵四边形ABCD∽四边形A′B′C′D′,
∴∠A=∠A′=138°,
∵∠A+∠B+∠C+∠D=360°,
∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.
故答案为87°.【点睛】此题考查了相似多边形的性质.此题比较简单,解题的关键是掌握相似多边形的对应角相等定理的应用.18、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)见解析.【分析】(1)先用同角的余角相等,判断出∠AEF=∠DFG,即可得出结论;(2)先判断出△AHF≌△DNF,得出AH=DN,FH=FN,进而判断出EH=EN,即可得出结论;(3)先判断出AF=PG,PF=AE,进而判断出PG=PD,得出∠MDG=45°,进而得出∠FGE=∠GDM,判断出△MGN∽△MDG,即可得出结论.【详解】(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)如图2,,延长NF,EA相交于H,∴∠AFH=∠DFN,由(1)知,∠EAF=∠D=90°,∴∠HAF=∠D=90°,∵点F是AD的中点,∴AF=DF,∴△AHF≌△DNF(ASA),∴AH=DN,FH=FN,∵∠EFN=90°,∴EH=EN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)如图3,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,同(1)的方法得,△AEF≌△PFG(AAS),∴AF=PG,PF=AE,∵AE=AD,∴PF=AD,∴AF=PD,∴PG=PD,∵∠P=90°,∴∠PDG=45°,∴∠MDG=45°,在Rt△EFG中,EF=FG,∴∠FGE=45°,∴∠FGE=∠GDM,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴,MG2=MN•MD.【点睛】考核知识点:相似三角形判定和性质.作辅助线,构造全等三角形,利用相似三角形解决问题是关键.20、(1);(2)1.【分析】(1)在Rt△ABD中利用三角函数即可求解;(2)作CE⊥AB于点E,在Rt△BCE中利用三角函数求得BE的长,然后根据CD=AE=AB﹣BE求解.【详解】(1)作CE⊥AB于点E,在Rt△ABD中,AD===(米);(2)在Rt△BCE中,CE=AD=米,BE=CE•tanβ=×=10(米),则CD=AE=AB﹣BE=30﹣10=1(米)答:乙建筑物的高度DC为1m.21、(1)y=x2-x-2;(2)P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)m=1时.【分析】(1)根据题意,可设抛物线表达式为,再将点C坐标代入即可;(2)设点P的坐标为(m,0),表达出PB2、PC2、BC2,再进行分类讨论即可;(3)根据“当MQ=DC时,四边形CQMD为平行四边形”,用m的代数式表达出MQ=DC求解即可.【详解】解:(1)∵抛物线与x轴交于A(-1,0),B(4,0)两点,
故可设抛物线的表达式为:,将C(0,-2)代入得:-4a=-2,解得:a=∴抛物线的解析式为:y=x2-x-2(2)设点P的坐标为(m,0),
则PB2=(m-4)2,PC2=m2+4,BC2=20,
①当PB=PC时,(m-4)2=m2+4,解得:m=②当PB=BC时,同理可得:m=4±2③当PC=BC时,同理可得:m=±4(舍去4),故点P的坐标为(,0)或(4+2,0)或(4-2,0)或(-4,0);(3)∵C(0,-2)
∴由菱形的对称性可知,点D的坐标为(0,2),
设直线BD的解析式为y=kx+2,又B(4,0)
解得k=-1,
∴直线BD的解析式为y=-x+2;
则点M的坐标为(m,-m+2),点Q的坐标为(m,m2-m-2)当MQ=DC时,四边形CQMD为平行四边形∴-m+2-(m2-m-2)=2-(-2)解得m=0(舍去)m=1故当m=1时,四边形CQMD为平行四边形.【点睛】本题考查了二次函数与几何的综合应用,难度适中,解题的关键是灵活应用二次函数的性质与三角形、四边形的判定及性质.22、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴抛物线的解析式为y=﹣x1+x+1.(1)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(1,0),∴0<m<1.∵点P的横坐标为m,∴点P的坐标为(m,﹣m1+m+1),点E的坐标为(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(1)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.【点睛】本题考查二次函数图像的综合问题,解题关键是熟练掌握待定系数法求解析式、函数的思想求最大值以及平行四边形的性质及平移规律等知识.23、(1)直线与相切;理由见解析;(2).【分析】(1)连接OE、OD,根据切线的性质得到∠OAC=90°,根据三角形中位线定理得到OE∥BC,证明△AOE≌△DOE,根据全等三角形的性质、切线的判定定理证明;(2)根据切线长定理可得DE=AE=2.5,由圆周角定理可得∠AOD=100°,然后根据弧长公式计算弧AD的长,从而可求得结论.【详解】解:(1)直线DE与⊙O相切,理由如下:连接OE、OD,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中∵OA=OD∠1=∠2OE=OE,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD为⊙O的半径,∴DE为⊙O的切线;(2)∵DE、AE是⊙O的切线,∴DE=AE,∵点E是AC的中点,∴DE=AE=AC=2.5,∵∠AOD=2∠B=2×50°=100°,∴阴影部分的周长=.【点睛】本题考查的是切线的判定与性质、全等三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省吕梁市2024年七年级上学期数学期中考试试卷【附答案】
- 工程项目全过程
- 2021年九上科学《常考题易错题》分类题型汇编1参考答案
- 北京朝阳外国语学校数学新初一摸底试题及答案
- 压疮的预防及护理课件(完整版)
- 城市数字底座CIM数字城市发展方向与技术
- 二年级上册《生态 生命 安全》教案
- 2018离婚协议书范本(标准版)
- 2024年廊坊客运从业资格证理论考试答案
- 2024年黑龙江小型客运从业资格证考试培训试题和答案
- 基于深度学习理念的高中思想政治大单元教学设计
- 干部人事档案审核情况登记表
- 【课件】什么是美术作品+课件-2023-2024学年高中美术湘美版(2019)美术鉴赏
- 诚信教育主题班会(35张)课件
- 医疗器械质量管理体系文件模板
- 光伏工程 危害辨识风险评价表(光伏)
- 施工现场总平面布置(完整版)
- 2.7《昼夜和四季变化对生物的影响》课件
- 新老师培训专题讲座《扎根向下+向上生长》
- 各种家具生产工艺流程
- 马克思主义中国化与青年学生使命担当学习通课后章节答案期末考试题库2023年
评论
0/150
提交评论