版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省大庆市肇州实验中学九年级数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.二次函数y=(x﹣1)2+2,它的图象顶点坐标是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)2.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为A.1或 B.-或 C. D.13.已知二次函数的图象经过点,当自变量的值为时,函数的值为()A. B. C. D.4.关于二次函数,下列说法正确的是()A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧C.当时,的值随值的增大而减小 D.的最小值为-35.二次函数的图象如图所示,下列结论:;;;;,其中正确结论的是A. B. C. D.6.如图的几何体由6个相同的小正方体搭成,它的主视图是()A. B. C. D.7.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)8.下列四种图案中,不是中心对称图形的为()A. B. C. D.9.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.10.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为()A.米 B.米 C.米 D.米11.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-212.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A. B. C. D.二、填空题(每题4分,共24分)13.若,则化简成最简二次根式为__________.14.一个多边形的每个外角都是36°,这个多边形是______边形.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=▲.16.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.17.如图,的直径垂直弦于点,且,,则弦__________.18.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.三、解答题(共78分)19.(8分)已知关于的一元二次方程的两实数根,满足,求的取值范围.20.(8分)如图,点P在直线y=x-1上,设过点P的直线交抛物线y=x2于A(a,a2),B(b,b2)两点,当满足PA=PB时,称点P为“优点”.(1)当a+b=0时,求“优点”P的横坐标;(2)若“优点”P的横坐标为3,求式子18a-9b的值;(3)小安演算发现:直线y=x-1上的所有点都是“优点”,请判断小安发现是否正确?如果正确,说明理由;如果不正确,举出反例.21.(8分)如图所示的直面直角坐标系中,的三个顶点坐标分别为,,.(1)将绕原点逆时针旋转画出旋转后的;(2)求出点到点所走过的路径的长.22.(10分)如图,在中,是内心,,是边上一点,以点为圆心,为半径的经过点,交于点.(1)求证:是的切线;(2)连接,若,,求圆心到的距离及的长.23.(10分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)24.(10分)已知点M(2,a)在反比例函数y=(k≠0)的图象上,点M关于原点中心对称的点N在一次函数y=﹣2x+8的图象上,求此反比例函数的解析式.25.(12分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm26.如图,在矩形ABCD中,AB=3,AD=6,点E在AD边上,且AE=4,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)求EF的长.
参考答案一、选择题(每题4分,共48分)1、D【解析】二次函数的顶点式是,,其中是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.2、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.3、B【分析】把点代入,解得的值,得出函数解析式,再把=3即可得到的值.【详解】把代入,得,解得=把=3,代入==-4故选B.【点睛】本题考查了二次函数的解析式,直接将坐标代入法是解题的关键.4、D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5、C【分析】利用图象信息以及二次函数的性质一一判断即可;【详解】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正确.故选C.【点睛】本题考查二次函数的图象与系数的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.6、A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.7、A【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】:∵y=(x﹣2)2﹣3为抛物线的顶点式,根据顶点式的坐标特点可知,
∴抛物线的顶点坐标为(2,-3).
故选A..【点睛】本题考查了将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.8、D【分析】根据中心对称图形的定义逐个判断即可.【详解】解:A、是中心对称图形,故本选项不符合题意;
B、是中心对称图形,故本选项不符合题意;
C、是中心对称图形,故本选项符合题意;
D、不是中心对称图形,故本选项符合题意;故选D.【点睛】本题考查了对中心对称图形的定义,判断中心对称图形的关键是旋转180°后能够重合.能熟知中心对称图形的定义是解此题的关键.9、D【分析】根据中心对称图形以及轴对称图形的定义逐项判断即可.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.不是中心对称图形,是轴对称图形,此选项错误;B.是中心对称图形,不是轴对称图形,此选项错误;C.不是中心对称图形,是轴对称图形,此选项错误;D.既是中心对称图形,又是轴对称图形,此选项正确;故选:D.【点睛】本题考查的知识点是识别中心对称图形以及轴对称图形,掌握中心对称图形以及轴对称图形的特征是解此题的关键.10、B【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,
设这棵树的高度为xm,
则可列比例为解得,x=4.1.
故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.11、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.12、B【分析】根据题意可知摸出白球的概率=白球个数÷白球与黄球的和,代入求x即可.【详解】解:设黄球个数为x,∵在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,∴=8÷(8+x)∴x=4,经检验x=4是分式方程的解,故选:B【点睛】本题考查的是利用频率估计概率,正确理解题意是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据二次根式的性质,进行化简,即可.【详解】===∵∴原式=,故答案是:.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.14、十【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:十.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为解题关键.15、5.5【解析】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形16、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE为Rt△ACB斜边的中线,∴,在△CEM中,,即,∴CM的最大值为.故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.17、【分析】先根据题意得出⊙O的半径,再根据勾股定理求出BE的长,进而可得出结论.【详解】连接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5−3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案为:.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.18、6【分析】根据三角形的面积等于即可求出k的值.【详解】∵由题意得:=3,解得,∵反比例函数图象的一个分支在第一象限,∴k=6,故答案为:6.【点睛】此题考查反比例函数的比例系数k的几何意义,掌握三角形的特点与k的关系是解题的关键.三、解答题(共78分)19、【分析】根据根与系数的关系建立关于a的不等式,再结合即可求出a的取值范围.【详解】解:依题意得,,∵,∴,解得,又由,解得,∴的取值范围为.【点睛】本题考查一元二次方程根与系数的关系,熟记两根之和与两根之积的公式是解题的关键,还需要注意公式使用的前提是.20、(1)点横坐标为;(2)27;(3)正确,理由见解析.【分析】(1)先判断点A与点B关于y轴对称得到PA∥x轴,所以P点的纵坐标为a2,P点的横坐标为a2+1,则利用PA=AB得到a2+1-a=a-(-a),然后求出a得到优点”P的横坐标;
(2)由于A点为PB的中点,根据线段的中点坐标公式得到a=,即2a-b=3,然后利用整体代入的方法计算代数式的值;(3)设P(x,x-1),利用A点为PB的中点得到a=,a2=,消去a得到方程x2+2(b-1)x+1-b2=0,然后通过证明此方程一定有解判断直线y=x-1上的所有点都是“优点”.【详解】(1)∵,∴点、关于对称,∴轴,∵,∴点的横坐标为,∴点的坐标为,点的坐标为,∵轴,∴,解得,∴点横坐标为;(2)∵点在直线上,∴点坐标为,∵,∴,∴,∴;(3)设点坐标为,结合点的坐标,当时,分析出点的坐标为,把点坐标代入抛物线解析式中,,整理,得,∵,∴对于任意,总有x使得PA=AB,∴直线上的点均为优点.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;记住线段的中点坐标公式;理解判别式的意义.21、(1)见解析;(2)【分析】(1)根据旋转角、旋转方向、旋转中心找到各顶点的对应点顺次连结即可;(2)根据勾股定理先求出OB的长度,然后根据弧长公式列式运算即可.【详解】解:(1)所作图形如下图所示:即为所求;(2)∵,∴OB=,∴点到点所走过的路径的长为:.【点睛】本题考查了旋转作图,掌握画图的方法和图形的特点是解题的关键;注意旋转时点经过的路径为一段弧长.22、(1)见解析;(2)点到的距离是1,的长度【分析】(1)连接OI,延长AI交BC于点D,根据内心的概念及圆的性质可证明OI∥BD,再根据等腰三角形的性质及平行线的性质可证明∠AIO=90°,从而得到结论;(2)过点O作OE⊥BI,利用垂径定理可得到OE平分BI,再根据圆的性质及中位线的性质即可求出O到BI的距离;根据角平分线及圆周角定理可求出∠FOI=60°,从而证明△FOI为等边三角形,最后利用弧长公式进行计算即可.【详解】解:(1)证明:延长AI交BC于D,连接OI,∵I是△ABC的内心,∴BI平分∠ABC,AI平分∠BAC,∴∠1=∠3,又∵OB=OI,∴∠3=∠2,∴∠1=∠2,∴OI∥BD,又∵AB=AC,∴AD⊥BC,即∠ADB=90°,∴∠AIO=∠ADB=90°,∴AI为的切线;(2)作OE⊥BI,由垂径定理可知,OE平分BI,又∵OB=OF,∴OE是△FBI的中位线,∵IF=2,∴OE=IF==1,∴点O到BI的距离是1,∵∠IBC=30°,由(1)知∠ABI=∠IBC,∴∠ABI=30°,∴∠FOI=60°,又∵OF=OI,∴△FOI是等边三角形,∴OF=OI=FI=2,∴的长度.【点睛】本题考查圆与三角形的综合,重点在于熟记圆的相关性质及定理,以及等腰三角形、等边三角形的性质与判定定理,注意圆中连接形成半径是常作的辅助线,等腰三角形中常利用“三线合一”构造辅助线.23、能,.【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率.【详解】能设第4次、第5次转出的数字分别为和,根据题意得:,解得:,所以后两次数字之和为8或9;画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种,所以.【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用.求出事件的所有情况和符合条件的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.24、y=﹣【分析】由点M与点N关于原点中心对称,可表示出点N的坐标,代入一次函数的关系式,可求得a的值,确定点M的坐标,再代入反比例函数的关系式求出k的值即可.【详解】∵点M(2,a),点M与点N关于原点中心对称,∴N(﹣2,﹣a)代入y=﹣2x+8得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级健康教育教案
- 三年级品德教案上册
- 河北省公务员面试模拟57
- 2024建筑工程机械租赁合同16篇
- 浙江公务员面试模拟45
- 湖南公务员面试模拟30
- 江苏行政职业能力2009
- 2024届中考数学一次函数天天练(9)及答案
- 4.1.2 垂线 华东师大版(2024)数学七年级上册课件
- 2024年改造合作开发协议
- PSS配置、构成、参数计算及投运试验讲解学习
- 【《项链》莫泊桑】《项链》课本剧剧本
- 中国传统文化翻译在高中英语课堂的有效运用
- 北师大版版一年级数学上册分类练习题
- 产业投资概述PPT课件
- 共价键的形成和类型(正式上课)
- 英语课堂游戏:微信视频通话
- 大班自主游戏观察记录
- 第三章3.4抗剪强度参数反算PPT优秀课件
- 线路架空及深基坑开挖专项施工方案(完整版)
- 拆除加固施工方案(完整版)
评论
0/150
提交评论