![2025届安徽省合肥市科大附中九上数学期末预测试题含解析_第1页](http://file4.renrendoc.com/view12/M0B/37/1B/wKhkGWZ-6WCAfdnUAAJxnxtdGhQ528.jpg)
![2025届安徽省合肥市科大附中九上数学期末预测试题含解析_第2页](http://file4.renrendoc.com/view12/M0B/37/1B/wKhkGWZ-6WCAfdnUAAJxnxtdGhQ5282.jpg)
![2025届安徽省合肥市科大附中九上数学期末预测试题含解析_第3页](http://file4.renrendoc.com/view12/M0B/37/1B/wKhkGWZ-6WCAfdnUAAJxnxtdGhQ5283.jpg)
![2025届安徽省合肥市科大附中九上数学期末预测试题含解析_第4页](http://file4.renrendoc.com/view12/M0B/37/1B/wKhkGWZ-6WCAfdnUAAJxnxtdGhQ5284.jpg)
![2025届安徽省合肥市科大附中九上数学期末预测试题含解析_第5页](http://file4.renrendoc.com/view12/M0B/37/1B/wKhkGWZ-6WCAfdnUAAJxnxtdGhQ5285.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省合肥市科大附中九上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,则kA.0或4 B.4或8 C.0 D.42.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程=15,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成3.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.4.平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(-2,-3),Q(3,-2) B.P(2,-3),Q(3,2)C.P(2,3),Q(-4,-) D.P(-2,3),Q(-3,-2)5.如图,点在以为直径的半圆上,点为圆心,,则的度数为()A. B. C. D.6.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.7.在Rt△ABC中,∠C=90°,sinA=,则∠A的度数是()A.30° B.45° C.60° D.90°8.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为-3和1;④a-2b+c≥0,其中正确的命题是()A.①②③ B.①④ C.①③ D.①③④9.如图,直线与双曲线交于、两点,则当时,x的取值范围是A.或B.或C.或D.10.小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. B. C.1 D.11.下列事件中,属于随机事件的是().A.13名同学中至少有两名同学的生日在同一个月B.在只有白球的盒子里摸到黑球C.经过交通信号灯的路口遇到红灯D.用长为,,的三条线段能围成一个边长分别为,,的三角形12.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°二、填空题(每题4分,共24分)13.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.14.若关于x的方程为一元二次方程,则m=__________.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.16.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.17.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.18.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=_____.三、解答题(共78分)19.(8分)阅读以下材料,并按要求完成相应的任务.已知平面上两点,则所有符合且的点会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.(问题)如图1,在平面直角坐标中,在轴,轴上分别有点,点是平面内一动点,且,设,求的最小值.阿氏圆的关键解题步骤:第一步:如图1,在上取点,使得;第二步:证明;第三步:连接,此时即为所求的最小值.下面是该题的解答过程(部分):解:在上取点,使得,又.任务:将以上解答过程补充完整.如图2,在中,为内一动点,满足,利用中的结论,请直接写出的最小值.20.(8分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)21.(8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.22.(10分)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?23.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.24.(10分)春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?25.(12分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表达式.26.如图为某海域示意图,其中灯塔D的正东方向有一岛屿C.一艘快艇以每小时20nmile的速度向正东方向航行,到达A处时得灯塔D在东北方向上,继续航行0.3h,到达B处时测得灯塔D在北偏东30°方向上,同时测得岛屿C恰好在B处的东北方向上,此时快艇与岛屿C的距离是多少?(结果精确到1nmile.参考数据:≈1.41,≈1.73,≈2.45)
参考答案一、选择题(每题4分,共48分)1、D【解析】根据已知一元二次方程有两个相等的实数根得出k≠0,Δ=(-2k)2-4×k×4=0【详解】因为关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,所以k≠0,Δ=(-2k)2【点睛】此题考查根的判别式,解题关键在于利用判别式解答.2、C【解析】题中方程表示原计划每天铺设管道米,即实际每天比原计划多铺设米,结果提前天完成,选.3、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【点睛】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、C【解析】根据反比函数的解析式y=(k≠0),可得k=xy,然后分别代入P、Q点的坐标,可得:-2×(-3)=6≠3×(-2),故不在同一反比例函数的图像上;2×(-3)=-6≠2×3,故不正确同一反比例函数的图像上;2×3=6=(-4)×(-),在同一反比函数的图像上;-2×3≠(-3)×(-2),故不正确同一反比例函数的图像上.故选C.点睛:此题主要考查了反比例函数的图像与性质,解题关键是求出函数的系数k,比较k的值是否相同来得出是否在同一函数的图像上.5、B【分析】首先由圆的性质得出OC=OD,进而得出∠CDO=∠DCO,∠COD=70°,然后由圆周角定理得出∠CAD.【详解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD为弧CD所对的圆心角,∠CAD为弧CD所对的圆周角∴∠CAD=∠COD=35°故答案为B.【点睛】此题主要考查对圆周角定理的运用,熟练掌握,即可解题.6、C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可.【详解】A、是中心对称图形,但不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、既是中心对称图形,又是轴对称图形,符合题意;D、既不是中心对称图形,也不是轴对称图形,故不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.7、C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.8、C【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=-1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(-3,0),把(1,0)代入可对①做出判断;由对称轴为x=-1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断;根据a、c的符号,以及对称轴可对④做出判断;最后综合得出答案.【详解】解:由图象可知:抛物线开口向上,对称轴为直线x=-1,过(1,0)点,
把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x=-1,即:整理得,b=2a,因此②不正确;由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(-3,0),因此方程ax2+bx+c=0的两根分别为-3和1;故③是正确的;
由a>0,b>0,c<0,且b=2a,则a-2b+c=a-4a+c=-3a+c<0,因此④不正确;
故选:C.【点睛】本题考查的是二次函数图象与系数之间的关系,能够根据开口判断a的符号,根据与x轴,y轴的交点判断c的值以及b用a表示出的代数式是解题的关键.9、C【解析】试题解析:根据图象可得当时,x的取值范围是:x<−6或0<x<2.故选C.10、A【解析】试题分析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是.故选A.考点:概率公式.11、C【分析】根据随机事件,必然事件,不可能事件的定义对每一选项进行判断即可.【详解】A、必然事件,不符合题意;B、不可能事件,不符合题意;C、随机事件,符合题意;D、不可能事件,不符合题意;故选C.【点睛】本题考查随机事件,正确理解随机事件,必然事件,不可能事件的定义是解题的关键.12、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正确;
∵点F不一定是OC的中点,
∴A错误.故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.二、填空题(每题4分,共24分)13、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【详解】解:过C作CD⊥AB于D点,由题意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.
故答案为:(30+30).【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.14、-1【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是1的整式方程叫一元二次方程进行分析即可.【详解】解:依题意得:|m|=1,且m-1≠0,
解得m=-1.
故答案为:-1.【点睛】本题考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.15、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.17、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.18、【分析】由l1∥l2,根据根据平行线分线段成比例定理可得FG=AC;由l2∥l3,根据根据平行线分线段成比例定理可得==.【详解】∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.【点睛】本题考查了平行线分线段成比例定理,掌握平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例是解题的关键.三、解答题(共78分)19、(1)(2).【分析】⑴将PC+kPD转化成PC+MP,当PC+kPD最小,即PC+MP最小,图中可以看出当C、P、M共线最小,利用勾股定理求出即可;⑵根据上一问得出的结果,把图2的各个点与图1对应代入,C对应O,D对应P,A对应C,B对应M,当D在AB上时为最小值,所以==【详解】解,,当取最小值时,有最小值,即三点共线时有最小值,利用勾股定理得的最小值为,提示:,,的最小值为.【点睛】此题主要考查了新定义的理解与应用,快速准确的掌握新定义并能举一反三是解题的关键.20、台灯的高约为45cm.【分析】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,可得四边形DGFH是矩形,可得DG=FH,根据∠A的余弦可求出AC的长,进而可得AD的长,根据∠A的正弦即可求出DG的长,由∠ADE=135°可得∠EDH=15°,根据∠DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案.【详解】如图,作DG⊥AB,EF⊥AB,交AB延长线于G、F,DH⊥EF于H,∴四边形DGFH是矩形,∴DG=FH,∵∠A=60°,AB=16,∴AC=AB·cos60°=16×=8,∴AD=AC+CD=8+40=48,∴DG=AD·sin60°=24,∵DH⊥EF,AF⊥EF,∴DH//AF,∴∠ADH=180°-∠A=120°,∵∠ADE=135°,∴∠EDH=∠ADE-∠ADH=15°,∵DE=15,∴EH=DE·sin15°≈3.9,∴EF=EH+FH=EH+DG=24+3.9≈45,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.21、(1)见解析;(2)3【分析】(1)只要证明∠DBF=∠DAC,即可判断.(2)利用相似三角形的性质即可解决问题.【详解】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴,∴BF=AC=3【点睛】本题考查相似三角形的性质和判定,同角的余角相等,直角三角形两锐角互余等知识,解题的关键是正确寻找相似三角形,利用新三角形的性质解决问题22、(1)y=﹣10x2+1300x﹣30000;(2)销售价定为65元时,所得月利润最大,最大月利润为12250元.【分析】(1)根据“总利润=单件利润×销售量”可得;(2)利用配方法求出二次函数最值即可得出答案.【详解】解:(1)设售价为x元/盏,月销售利润y元,根据题意得:y=(x﹣30)[200+10(80﹣x)]=﹣10x2+1300x﹣30000;(2)∵y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∴当销售价定为65元时,所得月利润最大,最大月利润为12250元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.23、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.试题解析:()把代入反比例函数表达式,得,解得,∴反比例函数表达式为,把代入正比例函数,得,解得,∴正比例函数表达式为.()直线由直线向上平移个单位所得,∴直线的表达式为,由,解得或,∵在第四象限,∴,连接,∵,,,.24、该单位这次共有30名员工去天水湾风景区旅游.【分析】首先根据共支付给春秋旅行社旅游费用27000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去天水湾风景区旅游.即可由对话框,超过25人的人数为(x﹣25)人,每人降低20元,共降低了20(x﹣25)元.实际每人收了[1000﹣20(x﹣25)]元,列出方程求解.【详解】设该单位这次共有名员工去天水湾风景区旅游,因为,所以员工人数一定超过25人,可得方程,整理,得,解得:,当时,,故舍去,当时,,符合题意,答:该单位这次共有30名员工去天水湾风景区旅游.25、(1)当x=2时,;(2)b=±3;
(3)或【分析】(1)将代入并化简,从而求出二次函数的最小值;(2)根据自变量的值只有一个,得出根的判别式,从而求出的值;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 2 Shopping Lesson2(说课稿)-2024-2025学年北师大版(三起)英语四年级上册
- 2024年三年级品社下册《马路不是游戏场》说课稿 山东版
- 2024-2025学年高中地理 第4章 旅游与区域的发展 第1节 旅游业的发展及其对区域的影响说课稿 中图版选修3
- Unit 1 Growing up 单元说课稿-2024-2025学年高中英语外研版(2019)选择性必修第二册
- 下城区汽车租赁合同范本
- 保安奖罚合同范例
- 医用耗材寄售合同范例
- 加贸合同范本
- 专利注册合同范本
- 人工智能购销合同范例
- 丰顺县县级集中式饮用水水源地基础状况调查和风险评估报告
- 重庆市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 《七律二首 送瘟神》教案- 2023-2024学年高教版(2023)中职语文职业模块
- 八年级语文上册《作文》专项测试卷及答案
- 2024年中考语文满分作文6篇(含题目)
- 2024年安全员之江苏省C2证(土建安全员)题库与答案
- 第一节-货币资金资料讲解
- 2024年华侨、港澳、台联考高考数学试卷含答案
- 工程造价咨询服务投标方案(技术方案)
- 驾驶员安全行车考核奖惩制度(3篇)
- 篮球俱乐部合伙协议
评论
0/150
提交评论