2024年中考数学二次函数压轴题专题10 平行四边形的存在性问题(学生版)_第1页
2024年中考数学二次函数压轴题专题10 平行四边形的存在性问题(学生版)_第2页
2024年中考数学二次函数压轴题专题10 平行四边形的存在性问题(学生版)_第3页
2024年中考数学二次函数压轴题专题10 平行四边形的存在性问题(学生版)_第4页
2024年中考数学二次函数压轴题专题10 平行四边形的存在性问题(学生版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10平行四边形的存在性问题一、知识导航考虑到求证平行四边形存在,必先了解平行四边形性质:(1)对应边平行且相等;(2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中:(1)对边平行且相等可转化为:,可以理解为点B移动到点A,点C移动到点D,移动路径完全相同.(2)对角线互相平分转化为:,可以理解为AC的中点也是BD的中点.【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:,→.当AC和BD为对角线时,结果可简记为:(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A、B、C、D满足“A+C=B+D”,则四边形ABCD是否一定为平行四边形?反例如下:之所以存在反例是因为“四边形ABCD是平行四边形”与“AC、BD中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论:(1)四边形ABCD是平行四边形:AC、BD一定是对角线.(2)以A、B、C、D四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.二、典例精析平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题.三定一动已知A(1,2)B(5,3)C(3,5),在坐标系内确定点D使得以A、B、C、D四个点为顶点的四边形是平行四边形.思路1:利用对角线互相平分,分类讨论:设D点坐标为(m,n),又A(1,2)B(5,3)C(3,5),可得:(1)BC为对角线时,,可得;(2)AC为对角线时,,解得;(3)AB为对角线时,,解得.当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可.比如:,,.(此处特指点的横纵坐标相加减)两定两动已知A(1,1)、B(3,2),点C在x轴上,点D在y轴上,且以A、B、C、D为顶点的四边形是平行四边形,求C、D坐标.【分析】设C点坐标为(m,0),D点坐标为(0,n),又A(1,1)、B(3,2).(1)当AB为对角线时,,解得,故C(4,0)、D(0,3);(2)当AC为对角线时,,解得,故C(2,0)、D(0,-1);(3)当AD为对角线时,,解得,故C(-2,0)、D(0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质:(1)对边平行且相等;(2)对角线互相平分.但此两个性质统一成一个等式:,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.三、中考真题演练1.(2023·山东淄博·中考真题)如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18

(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.2.(2023·广东广州·中考真题)已知点在函数的图象上.(1)若,求n的值;(2)抛物线与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设的外接圆圆心为C,与y轴的另一个交点为F,当时,是否存在四边形为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.3.(2023·山东·中考真题)如图,直线交轴于点,交轴于点,对称轴为的抛物线经过两点,交轴负半轴于点.为抛物线上一动点,点的横坐标为,过点作轴的平行线交抛物线于另一点,作轴的垂线,垂足为,直线交轴于点.

(1)求抛物线的解析式;(2)若,当为何值时,四边形是平行四边形?4.(2023·山东聊城·中考真题)如图①,抛物线与x轴交于点,,与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;5.(2023·山东枣庄·中考真题)如图,抛物线经过两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与轴交于点D.

(1)求该抛物线的表达式;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023·甘肃武威·中考真题)如图1,抛物线与轴交于点,与直线交于点,点在轴上.点从点出发,沿线段方向匀速运动,运动到点时停止.(1)求抛物线的表达式;(2)当时,请在图1中过点作交抛物线于点,连接,,判断四边形的形状,并说明理由.7.(2023·四川巴中·中考真题)在平面直角坐标系中,抛物线经过点和,其顶点的横坐标为.

(1)求抛物线的表达式.(3)若点为抛物线的对称轴上一动点,将抛物线向左平移个单位长度后,为平移后抛物线上一动点.在()的条件下求得的点,是否能与、、构成平行四边形?若能构成,求出点坐标;若不能构成,请说明理由.8.(2023·四川南充·中考真题)如图1,抛物线()与轴交于,两点,与轴交于点.(1)求抛物线的解析式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论