版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省漯河市漯河实验高中高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.2.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.3.过点且与原点距离最大的直线方程是()A. B.C. D.4.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.5.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.6.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac27.在△ABC中,如果,那么cosC等于()A. B. C. D.8.已知菱形的边长为,则()A. B. C. D.9.命题“”的否定是()A., B.,C., D.,10.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.已知是边长为4的等边三角形,为平面内一点,则的最小值为__________.12.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;13.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.15.在中,分别是角的对边,已知成等比数列,且,则的值为________.16.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,,.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.19.已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.20.在四棱锥中,,.(1)若点为的中点,求证:平面;(2)当平面平面时,求二面角的余弦值.21.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.2、C【解析】,且是纯虚数,,故选C.3、A【解析】
当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。4、A【解析】
根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.5、B【解析】
分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.6、C【解析】
通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.7、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可设a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,选D8、D【解析】
由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题9、B【解析】
含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.10、D【解析】
利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【点睛】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、-1.【解析】分析:可建立坐标系,用平面向量的坐标运算解题.详解:建立如图所示的平面直角坐标系,则,设,∴,易知当时,取得最小值.故答案为-1.点睛:求最值问题,一般要建立一个函数关系式,化几何最值问题为函数的最值,本题通过建立平面直角坐标系,把向量的数量积用点的坐标表示出来后,再用配方法得出最小值,根据表达式的几何意义也能求得最大值.12、【解析】
首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【点睛】本题简单考查了正余弦定理,考查计算能力,属于基础题型.13、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.14、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.15、【解析】
利用成等比数列得到,再利用余弦定理可得,而根据正弦定理和成等比数列有,从而得到所求之值.【详解】∵成等比数列,∴.又∵,∴.在中,由余弦定理,因,∴.由正弦定理得,因为,所以,故.故答案为.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.16、①③④⑤【解析】
由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)设等差数列的公差为,根据题中条件列有关和的方程组,求出和,即可求出等差数列的通项公式;(2)将数列的通项公式裂项,然后利用裂项求和法求出数列的前项和。【详解】(1)设等差数列的公差为,由可得,解得,;(2),。【点睛】本题考查等差数列通项公式、裂项求和法,在求解等差数列的通项公式时,一般利用方程思想求出等差数列的首项和公差求出通项公式,在求和时要根据数列通项的基本结构选择合适的求和方法对数列求和,属于常考题型,属于中等题。18、(1)(2)【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.19、(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的综合应用;1.数列求和.20、(1)见解析;(2).【解析】
(I)结合平面与平面平行判定,得到平面BEM平行平面PAD,结合平面与平面性质,证明结论.(II)建立空间坐标系,分别计算平面PCD和平面PDB的法向量,结合向量数量积公式,计算余弦值,即可.【详解】(Ⅰ)取的中点为,连结,.由已知得,为等边三角形,.∵,,∴,∴,∴.又∵平面,平面,∴∥平面.∵为的中点,为的中点,∴∥.又∵平面,平面,∴∥平面.∵,∴平面∥平面.∵平面,∴∥平面.(Ⅱ)连结,交于点,连结,由对称性知,为的中点,且,.∵平面平面,,∴平面,,.以为坐标原点,的方向为轴正方向,建立空间直角坐标系.则(0,,0),(3,0,0),(0,0,1).易知平面的一个法向量为.设平面的法向量为,则,,∴,∵,,∴.令,得,∴,∴.设二面角的大小为,则.【点睛】本道题考查了平面与平面平行判定和性质,考查了空间向量数量积公式,关键建立空间坐标系,难度偏难.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业工程中介服务协议模板汇编版B版
- 2024劳务安全生产协议书
- 2024城市公共厕所翻新工程协议样本版
- 房屋土地买卖合同2024年度重庆市渝中区2篇
- 江南大学《工程材料基础》2021-2022学年第一学期期末试卷
- 佳木斯大学《油画静物》2021-2022学年第一学期期末试卷
- 2024年专业交通违规车辆紧急拖移服务合同版
- 全新智慧城市整体解决方案合同(2024版)2篇
- 2024年外墙保温一体化板材施工合作合同版B版
- 暨南大学《涉外经济法》2021-2022学年第一学期期末试卷
- 《客舱安全管理与应急处置》课件-第7讲 非法干扰行为
- 消费者洞察用以发展您的跨境业务 - GWI-PayPal报告(简体中文版)
- 2024年度企业品牌推广服务合同
- Target -样衣要求和试身流程
- 公司安全事故隐患内部举报、报告奖励制度
- 2024年江苏省苏州市中考语文试卷
- 中华人民共和国民法典(总则)培训课件
- 孕产妇艾梅乙健康宣教
- 《管制刀具认定》课件
- 农业合作社全套报表(已设公式)-资产负债表-盈余及盈余分配表-成员权益变动表-现金流量表
- TCSAE 178-2021 电动汽车高压连接器技术条件
评论
0/150
提交评论