版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区生产建设兵团第七师高级中学2025届高一下数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列an中,a1=1,an=2A.211 B.22.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.3.过△ABC的重心任作一直线分别交边AB,AC于点D、E.若,,,则的最小值为()A.4 B.3 C.2 D.14.如果成等差数列,成等比数列,那么等于()A. B. C. D.5.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则6.下列表达式正确的是()①,②若,则③若,则④若,则A.①② B.②③ C.①③ D.③④7.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.8.已知函数的零点是和(均为锐角),则()A. B. C. D.9.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.10.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.12.在中,,点在边上,若,的面积为,则___________13.在中,已知M是AB边所在直线上一点,满足,则________.14.函数的反函数是______.15.设集合,它共有个二元子集,如、、等等.记这个二元子集为、、、、,设,定义,则_____.(结果用数字作答)16.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)18.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)19.如图,在正方体中,是的中点,在上,且.(1)求证:平面;(2)在线段上存在一点,,若平面,求实数的值.20.的内角的对边分别为,.(1)求;(2)若,的面积为,求.21.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将a1=1代入递推公式可得a2,同理可得出a【详解】∵a1=1,an=22an-1-1(【点睛】本题用将a12、D【解析】
由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【点睛】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.3、B【解析】
利用重心以及向量的三点共线的结论得到的关系式,再利用基本不等式求最小值.【详解】设重心为,因为重心分中线的比为,则有,,则,又因为三点共线,所以,则,取等号时.故选B.【点睛】(1)三角形的重心是三条中线的交点,且重心分中线的比例为;(2)运用基本不等式时,注意取等号时条件是否成立.4、D【解析】
因为成等差数列,所以,因为成等比数列,所以,因此.故选D5、D【解析】
利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.6、D【解析】
根据基本不等式、不等式的性质即可【详解】对于①,.当,即时取,而,.即①不成立。对于②若,则,若,显然不成立。对于③若,则,则正确。对于④若,则,则,正确。所以选择D【点睛】本题主要考查了基本不等式以及不等式的性质,基本不等式一定要满足一正二定三相等。属于中等题。7、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。8、B【解析】
将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.9、A【解析】
设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【点睛】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.10、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②【解析】
对四个命题分别进行判断即可得到结论【详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【点睛】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。12、【解析】
由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.13、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.14、,【解析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.15、1835028【解析】
分别分析中二元子集中较大元素分别为、、、时,对应的二元子集中较小的元素,再利用题中的定义结合数列求和思想求出结果.【详解】当二元子集较大的数为,则较小的数为;当二元子集较大的数为,则较小的数为、;当二元子集较大的数为,则较小的数为、、;当二元子集较大的数为,则较小的数为、、、、.由题意可得,令,得,上式下式得,化简得,因此,,故答案为:.【点睛】本题考查新定义,同时也考查了数列求和,解题的关键就是找出相应的规律,列出代数式进行计算,考查运算求解能力,属于难题.16、【解析】
把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)5;(3)空白栏中填5,【解析】
(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(1)设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为1,可知,解得.故图中各小长方形的宽度为2.(2)由(1)知各小组依次是,其中点分别为对应的频率分别为故可估计平均值为.(3)由(2)可知空白栏中填5.由题意可知,,,根据公式,可求得,.所以所求的回归直线方程为.【点睛】本题考查频率分布直方图的实际应用以及回归直线方程的求法,难度一般.(1)频率分布直方图中,小矩形的面积代表该组数据的频率,所有小矩形面积之和为;(2)求解回归直线方程时,先求解出,然后根据回归直线方程过样本点的中心再求解出.18、(1)(2)该高三学生的记忆力x和判断力是正相关;判断力为4的同学的记忆力约为9【解析】
(1)根据所给数据和公式计算回归方程的系数,注意回归直线过中心点,得回归方程;(2)根据回归系数的正负可得正相关还是负相关,令代入可得估计值.【详解】(1),,,,,,故线性回归方程为.(2)因为,故可以判断,该高三学生的记忆力x和判断力是正相关;由回归直线方程预测,判断力为4的同学的记忆力约为9.【点睛】本题考查求线性回归直线方程,考查变量的相关性及回归方程的应用.回归方程中的系数的正负说明两数据的正负相关,系数为正,则为正相关,系数为负,则为负相关.19、(1)证明见解析;(2)【解析】
(1)分别证明与即可.(2)设平面与的交点为,利用线面与面面平行的判定与性质可知只需满足,再利用平行所得的相似三角形对应边成比例求解即可.【详解】(1)连接.因为正方体,故,且,又.故平面.又平面,故.同理,,,故.又,平面.故平面.(2)设平面与的交点为,连接.因为,平面,,故.又,故.设正方体边长为6,则因为,故故,所以.又平面则只需即可.此时又因为,故四边形为平行四边形.故.此时.故.故【点睛】本题主要考查了线面垂直的证明以及根据线面平行求解参数的问题,需要根据题意找到线与所证平面内的一条直线平行,并利用平面几何中的相似方法求解.属于中档题.20、(1);(2)8.【解析】
(1)首先利用正弦定理边化角,再利用余弦定理可得结果;(2)利用面积公式和余弦定理可得结果.【详解】(1)因为,所以,则,因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业工程中介服务协议模板汇编版B版
- 2024劳务安全生产协议书
- 2024城市公共厕所翻新工程协议样本版
- 房屋土地买卖合同2024年度重庆市渝中区2篇
- 江南大学《工程材料基础》2021-2022学年第一学期期末试卷
- 佳木斯大学《油画静物》2021-2022学年第一学期期末试卷
- 2024年专业交通违规车辆紧急拖移服务合同版
- 全新智慧城市整体解决方案合同(2024版)2篇
- 2024年外墙保温一体化板材施工合作合同版B版
- 暨南大学《涉外经济法》2021-2022学年第一学期期末试卷
- 思想道德与法治 第三章
- 跟岗研修的心得体会
- 医务科工作述职报告ppt参考课件
- 开放水域潜水员理论知识考试试题与答案
- 质量、环境、职业健康安全、有害物质管理手册
- 对讲机交接管理流程
- 孵化器(大学科技园)绩效考核评价体系
- 遍净农药多菌灵原药msds
- 牛顿环实验ppt精品课件
- 基于高考评价体系的化学学科素养的试题研究
- 铁路线路工更换尖轨作业指导书
评论
0/150
提交评论