版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省汪清六中高三(最后冲刺)新高考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.2.已知,,且是的充分不必要条件,则的取值范围是()A. B. C. D.3.对于定义在上的函数,若下列说法中有且仅有一个是错误的,则错误的一个是()A.在上是减函数 B.在上是增函数C.不是函数的最小值 D.对于,都有4.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.5.年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B.C. D.6.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.7.如图,已知直线与抛物线相交于A,B两点,且A、B两点在抛物线准线上的投影分别是M,N,若,则的值是()A. B. C. D.8.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q9.设复数满足,在复平面内对应的点的坐标为则()A. B.C. D.10.已知函数的一条切线为,则的最小值为()A. B. C. D.11.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-2812.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.14.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.15.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的体积为__________.16.点到直线的距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)求证:在上存在唯一的极大值;(Ⅲ)直接写出函数在上的零点个数.19.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.(1)求的值;(2)若的面积为求的值.20.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;(2)若的面积为,求的周长.21.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).22.(10分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.2、D【解析】
“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.3、B【解析】
根据函数对称性和单调性的关系,进行判断即可.【详解】由得关于对称,若关于对称,则函数在上不可能是单调的,故错误的可能是或者是,若错误,则在,上是减函数,在在上是增函数,则为函数的最小值,与矛盾,此时也错误,不满足条件.故错误的是,故选:.【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.4、A【解析】
根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.5、B【解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.6、A【解析】
求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.7、C【解析】
直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值.【详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,∴,点B的横坐标为,∴点B的坐标为,把代入直线,解得,故选:C.【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.8、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。9、B【解析】
根据共轭复数定义及复数模的求法,代入化简即可求解.【详解】在复平面内对应的点的坐标为,则,,∵,代入可得,解得.故选:B.【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.10、A【解析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.11、A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.12、D【解析】
按照复数的运算法则先求出,再写出,进而求出.【详解】,,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1【点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.14、【解析】
算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解.【详解】解:由程序语句知:算法的功能是求的值,当时,,可得:,或(舍去);当时,,可得:(舍去).综上的值为:.故答案为:.【点睛】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.15、4【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为416、2【解析】
直接根据点到直线的距离公式即可求出。【详解】依据点到直线的距离公式,点到直线的距离为。【点睛】本题主要考查点到直线的距离公式的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知;,易知当时,,;当时,函数单调递增,而,又,由零点存在定理得,使得,,使得,有从而得证.【详解】(1)依题意,,因为,且,故,故函数在上单调递减,故.(2)依题意,,令,则;而,可知当时,,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.18、(Ⅰ);(Ⅱ)证明见解析;(Ⅲ)函数在有3个零点.【解析】
(Ⅰ)求出导数,写出切线方程;(Ⅱ)二次求导,判断单调递减,结合零点存在性定理,判断即可;(Ⅲ),数形结合得出结论.【详解】解:(Ⅰ),,,故在点,处的切线方程为,即;(Ⅱ)证明:,,,故在递减,又,,由零点存在性定理,存在唯一一个零点,,当时,递增;当时,递减,故在只有唯一的一个极大值;(Ⅲ)函数在有3个零点.【点睛】本题主要考查利用导数求切线方程,考查零点存在性定理的应用,关键是能够通过导函数的单调性和零点存在定理确定导函数的零点个数,进而确定函数的单调性,属于难题.19、(1);(2).【解析】
(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得,联立即可求解求的值.(2)由(1)可知,再根据同角三角函数的关系与正弦定理可求得,再结合的面积为利用面积公式求解即可.【详解】解:成等差数列,可得而,即,展开化简得,因为,故①又成等比数列,可得,即,可得联立解得(负的舍去),可得锐角;由可得,由为锐角,解得,因为为锐角,故可得,由正弦定理可得,又的面积为可得,解得.【点睛】本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.20、(1);(2)1.【解析】
(1)由正弦定理化简已知等式可得sinAsinB=sinBcosA,求得tanA=,结合范围A∈(0,π),可求A=.(2)利用三角形的面积公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周长的值.【详解】(1)由题意,在中,因为,由正弦定理,可得sinAsinB=sinBcosA,又因为,可得sinB≠0,所以sinA=cosA,即:tanA=,因为A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面积2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周长a+b+c=5+7=1.【点睛】本题主要考查了正弦定理,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.21、(1);(2)见解析;(3)见解析【解析】
(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,,(1);;;综上得证.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题.22、(1),;(2)1.【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美育心得体会集合6篇
- 顶岗实习工作总结感想5篇
- 销售讲师工作总结5篇
- 日处理100吨餐厨垃圾项目可行性研究报告
- 教师年终考核班主任总结报告5篇
- 消费者对小型家庭汽车购买行为选择因素调查问卷
- 塑料厂管井施工合同
- 企业差旅及会议社会责任
- 综艺节目编剧招聘合同样本
- 建筑工程高空施工合同
- 广东省广州市2024-2025学年九年级上学期期中英语试题(无答案)
- 2024-2025学年人教版物理八年级上册 期中考试物理试卷
- MOOC 3D工程图学-华中科技大学 中国大学慕课答案
- 争战得胜之方江秀琴
- 浅析初中数学学科特点与思想方法
- 施工方案及施工三措
- 生涯彩虹图(含分析)
- 村廉政风险点及防控措施一览表档
- 生管SWOT分析
- (完整版)离子共存问题习题及参考答案(最新(精华版)
- 门座式起重机检验规程
评论
0/150
提交评论