黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题含解析_第1页
黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题含解析_第2页
黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题含解析_第3页
黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题含解析_第4页
黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市第三中学2025届高一下数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的公比为正数,且,则()A. B. C. D.2.数列1,,,,…的一个通项公式为()A. B. C. D.3.已知圆,由直线上一点向圆引切线,则切线长的最小值为()A.1 B.2 C. D.4.从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”5.圆心在(-1,0),半径为的圆的方程为()A. B.C. D.6.过点P(0,2)作直线x+my﹣4=0的垂线,垂足为Q,则Q到直线x+2y﹣14=0的距离最小值为()A.0 B.2 C. D.27.把等差数列1,3,5,7,9,…依次分组,按第一个括号一个数,第二个括号二个数,第三个括号三个数,第四个括号一个数,…循环分为,,,,,,,…,则第11个括号内的各数之和为()A.99 B.37 C.135 D.808.已知扇形的半径为,面积为,则这个扇形圆心角的弧度数为()A. B. C.2 D.49.在中,若,则的面积为().A.8 B.2 C. D.410.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.已知锐角、满足,,则的值为______.12.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.13.若函数的图像与直线有且仅有四个不同的交点,则的取值范围是______14.不等式x(2x﹣1)<0的解集是_____.15.在中,角所对的边分别为,下列命题正确的是_____________.①总存在某个内角,使得;②存在某钝角,有;③若,则的最小角小于.16.若数列是等差数列,则数列也为等差数列,类比上述性质,相应地,若正项数列是等比数列,则数列_________也是等比数列.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.18.如图,平行四边形中,是的中点,交于点.设,.(1)分别用,表示向量,;(2)若,,求.19.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.20.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)求三棱锥的体积.21.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.2、A【解析】

把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.3、A【解析】

将圆的方程化为标准方程,找出圆心坐标与半径,求出圆心到直线的距离,利用切线的性质及勾股定理求处切线长的最小值,即可得到答案.【详解】将圆化为标准方程,得,所以圆心坐标为,半径为,则圆心到直线的距离为,所以切线长的最小值为,故选A.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到圆的标准方程,点到直线的距离公式,以及数形结合思想的应用,属于基础题.4、D【解析】

写出所有等可能事件,求出事件“至少有一个黑球”的概率为,事件“都是红球”的概率为,两事件的概率和为,从而得到两事件对立.【详解】记两个黑球为,两个红球为,则任取两球的所有等可能结果为:,记事件A为“至少有一个黑球”,事件为:“都是红球”,则,因为,所以事件与事件互为对立事件.【点睛】本题考查古典概型和对立事件的判断,利用两事件的概率和为1是判断对立事件的常用方法.5、A【解析】

根据圆心和半径可直接写出圆的标准方程.【详解】圆心为(-1,0),半径为,则圆的方程为故选:A【点睛】本题考查圆的标准方程的求解,属于简单题.6、C【解析】

由直线过定点,得到的中点,由垂直直线,得到点在以点为圆心,以为半径的圆,求得圆的方程,由此求出到直线的距离最小值,得到答案.【详解】由题意,过点作直线的垂线,垂足为,直线过定点,由中点公式可得,的中点,由垂直直线,所以点点在以点为圆心,以为半径的圆,其圆的方程为,则圆心到直线的距离为所以点到直线的距离最小值;,故选:C.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系的应用,同时涉及到点到直线的距离公式的应用,着重考查了推理与计算能力,以及分析问题和解答问题的能力,试题综合性强,属于中档试题.7、D【解析】

由已知分析,寻找数据的规律,找出第11个括号的所有数据即可.【详解】因为每三个括号,总共有数据1+2+3=6个,相当于一个“周期”,故第11个括号,在第4个周期的第二个括号;则第11个括号中有两个数,其数值为首项为1,公差为2的等差数列数列中的第20项(6,第21项的和,即.故选:D.【点睛】本题考查数列新定义问题,涉及归纳总结,属中档题.8、D【解析】

利用扇形面积,结合题中数据,建立关于圆心角的弧度数的方程,即可解得.【详解】解:设扇形圆心角的弧度数为,因为扇形所在圆的半径为,且该扇形的面积为,则扇形的面积为,解得:.故选:D.【点睛】本题在已知扇形面积和半径的情况下,求扇形圆心角的弧度数,着重考查了弧度制的定义和扇形面积公式等知识,属于基础题.9、C【解析】

由正弦定理结合已知,可以得到的关系,再根据余弦定理结合,可以求出的值,再利用三角形面积公式求出三角形的面积即可.【详解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面积为,故本题选C.【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.10、C【解析】

根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.12、【解析】

由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.13、【解析】

将函数写成分段函数的形式,再画出函数的图象,则直线与函数图象有四个交点,从而得到的取值范围.【详解】因为因为所以,所以图象关于对称,其图象如图所示:因为直线与函数图象有四个交点,所以.故答案为:.【点睛】本题考查利用三角函数图象研究与直线交点个数,考查数形结合思想的应用,作图时发现图象关于对称,是快速画出图象的关键.14、【解析】

求出不等式对应方程的实数根,即可写出不等式的解集,得到答案.【详解】由不等式对应方程的实数根为0和,所以该不等式的解集是.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.15、①③【解析】

①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在内,即可判定;②中,利用两角和的正切公式,化简得到,根据钝角三角形,即可判定;③中,利用向量的运算,得到,由于不共线,得到,再由余弦定理,即可判定.【详解】由题意,对于①中,在中,当,则,若为直角三角形,则必有一个角在内;若为锐角三角形,则必有一个内角小于等于;若为钝角三角形,也必有一个角小于内,所以总存在某个内角,使得,所以是正确的;对于②中,在中,由,可得,由为钝角三角形,所以,所以,所以不正确;对于③中,若,即,即,由于不共线,所以,即,由余弦定理可得,所以最小角小于,所以是正确的.综上可得,命题正确的是①③.故答案为:①③.【点睛】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16、【解析】

利用类比推理分析,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.【详解】由数列是等差数列,则当时,数列也是等差数列.类比上述性质,若数列是各项均为正数的等比数列,则当时,数列也是等比数列.故答案为:【点睛】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】

(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.18、(1),(2)2【解析】

(1)由平面的加法可得,又根据三角形相似得到,再根据向量的减法可得的不等式.

(2)由平面向量数量积运算得,然后再将条件代入可得答案.【详解】(1).由∽,又所以,即(2)由,【点睛】本题考查了平面向量的线性运算及平面向量数量积运算,属中档题.19、(1);(2)【解析】

(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,因此把问题转化为求bc的最大值.【详解】(1)因为(1+b)(sinA-sinB)=(c-b)sinC,由正弦定理得:(1+b)(a-b)=(c-b)c∴(a+b)(a-b)=(c-b)c,得b2+c2-a2=bc由余弦定理得:,所以.(2)因为b2+c2-a2=bc,所以bc=b2+c2-1≥2bc-1,可得bc≤1;所以,当且仅当b=c=1时,取等号.∴面积的最大值.【点睛】本题考查正弦定理解三角形及面积问题,解决三角形面积最值问题常常结合均值不等式求解,属于中等题.20、(1)见解析;(2)【解析】

(1)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC;(2)由点为棱的中点,且底面,利用等体积法得.【详解】(1)∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论