2022-2023学年山西省晋城市陵川一中高三数学第一学期期末考试模拟试题含解析_第1页
2022-2023学年山西省晋城市陵川一中高三数学第一学期期末考试模拟试题含解析_第2页
2022-2023学年山西省晋城市陵川一中高三数学第一学期期末考试模拟试题含解析_第3页
2022-2023学年山西省晋城市陵川一中高三数学第一学期期末考试模拟试题含解析_第4页
2022-2023学年山西省晋城市陵川一中高三数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“是函数在区间内单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知集合,则集合()A. B. C. D.3.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A. B.C. D.4.若复数,则()A. B. C. D.205.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知当,,时,,则以下判断正确的是A. B.C. D.与的大小关系不确定7.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.88.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.9.已知复数,为的共轭复数,则()A. B. C. D.10.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.12.已知复数,若,则的值为()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设、满足约束条件,若的最小值是,则的值为__________.14.已知数列的前项满足,则______.15.已知,,其中,为正的常数,且,则的值为_______.16.已知双曲线的左右焦点分别为,过的直线与双曲线左支交于两点,,的内切圆的圆心的纵坐标为,则双曲线的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.18.(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.19.(12分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.20.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.2、D【解析】

弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.3、A【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.4、B【解析】

化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.5、B【解析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题6、C【解析】

由函数的增减性及导数的应用得:设,求得可得为增函数,又,,时,根据条件得,即可得结果.【详解】解:设,则,即为增函数,又,,,,即,所以,所以.故选:C.【点睛】本题考查了函数的增减性及导数的应用,属中档题.7、B【解析】

建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.8、D【解析】

求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.9、C【解析】

求出,直接由复数的代数形式的乘除运算化简复数.【详解】.故选:C【点睛】本题考查复数的代数形式的四则运算,共轭复数,属于基础题.10、A【解析】

由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.11、C【解析】

设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.12、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.14、【解析】

由已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法.【详解】∵①,∴时,②,①-②得,∴,又,∴().故答案为:.【点睛】本题考查求数列通项公式,由已知条件.类比已知求的解题方法求解.15、【解析】

把已知等式变形,展开两角和与差的三角函数,结合已知求得值.【详解】解:由,得,,即,,又,,解得:.为正的常数,.故答案为:.【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题.16、2【解析】

由题意画出图形,设内切圆的圆心为,圆分别切于,可得四边形为正方形,再由圆的切线的性质结台双曲线的定义,求得的内切圆的圆心的纵坐标,结合已知列式,即可求得双曲线的离心率.【详解】设内切圆的圆心为,圆分别切于,连接,则,故四边形为正方形,边长为圆的半径,由,,得,与重合,,,即——①,——②联立①②解得:,又因圆心的纵坐标为,.故答案为:【点睛】本题考查双曲线的几何性质,考查数形结合思想与运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)用分类讨论思想去掉绝对值符号后可解不等式;(2)由(1)得的最小值为4,则由,代换后用基本不等式可得最小值.【详解】解:(1)讨论:当时,,即,此时无解;当时,;当时,.所求不等式的解集为(2)分析知,函数的最小值为4,当且仅当时等号成立.的最小值为4.【点睛】本题考查解绝对值不等式,考查用基本不等式求最小值.解绝对值不等式的方法是分类讨论思想.18、(1)12(2)【解析】

(1)根据焦距得焦点坐标,结合椭圆上的点的坐标,根据定义;(2)求出椭圆的标准方程,设,联立直线和椭圆,结合韦达定理表示出面积,即可求解最大值.【详解】(1)设椭园的焦距为,则,故.则椭圆过点,由椭圆定义知:,故,因此,的周长;(2)由(1)知:,椭圆方程为:设,则,,,,,当且仅当在短轴顶点处取等,故面积的最大值为.【点睛】此题考查根据椭圆的焦点和椭圆上的点的坐标求椭圆的标准方程,根据直线与椭圆的交点关系求三角形面积的最值,涉及韦达定理的使用,综合性强,计算量大.19、(1)();(2).【解析】

(1)化简得到直线方程为,再利用极坐标公式计算得到答案.(2)联立方程计算得到,,计算得到答案.【详解】(1)由消得,即,是过原点且倾斜角为的直线,∴的极坐标方程为().(2)由得,∴,由得∴,∴.【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和应用能力.20、(1)证明见解析(2)证明见解析【解析】

(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,,,(以上三式当且仅当时同时取“=”)由(1)知,,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.21、(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】

(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.【详解】(1)函数由条件得函数的定义域:,当时,,所以:,时,,当时,,当,时,,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,,由条件得有两根:,,满足,△,可得:或;由,可得:.,函数的对称轴为,,所以:,;,可得:,,,则:,所以:;所以:,令,,,则,因为:时,,所以:在,上是单调递减,在,上单调递增,因为:,(1),,(1),所以,;即的取值范围是:,;,所以有,则,;所以当取到最小值时所对应的的值为;【点睛】本题主要考查利用导数研究函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论