陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题含解析_第1页
陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题含解析_第2页
陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题含解析_第3页
陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题含解析_第4页
陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省韩城市苏山分校2025届高一数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.42.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定4.已知奇函数满足,则的取值不可能是()A.2 B.4 C.6 D.105.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.126.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则7.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定8.在等差数列中,若前项的和,,则()A. B. C. D.9.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.10.设满足约束条件,则的最大值为()A.3 B.9 C.12 D.15二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,则_____.12.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.13.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).14.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.15.如图,在边长为的菱形中,,为中点,则______.16.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.18.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.19.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值20.已知向量与向量的夹角为,且,.(1)求;(2)若,求.21.设.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】

根据线面垂直与平行的性质与判定分析或举出反例即可.【详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【点睛】本题主要考查了空间中平行垂直的判定与性质,属于中档题.3、C【解析】

求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.4、B【解析】

由三角函数的奇偶性和对称性可求得参数的值.【详解】由是奇函数得又因为得关于对称,所以,解得所以当时,得A答案;当时,得C答案;当时,得D答案;故选B.【点睛】本题考查三角函数的奇偶性和对称性,属于基础题.5、C【解析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】

根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【点睛】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.7、A【解析】甲批次的平均数为0.617,乙批次的平均数为0.6138、C【解析】试题分析:.考点:等差数列的基本概念.9、C【解析】

根据三角函数定义结合正弦的二倍角公式计算即可【详解】由题意,∴,,.故选:C.【点睛】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.10、C【解析】所以,过时,的最小值为12。故选C。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.12、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力13、1.76【解析】

将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.14、;【解析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.15、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.16、1【解析】

由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用向量的运算法则求出,,再利用向量垂直的充要条件列出方程求出m;(2)由题意得A,B,C三点不共线,则与不共线,列出关于m的不等式即可.【详解】(1)因为=,=,=,所以,,若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0,解得.(2)若点A,B,C能构成三角形,则这三点不共线,即与不共线,得3(1﹣m)≠2﹣m,∴实数时,满足条件.【点睛】本题考查向量垂直、向量共线的充要条件、利用向量共线解决三点共线、三点不共线等问题,属于基础题.18、(1)见解析;(2)见解析【解析】

(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.19、(1)见解析(2)(3)【解析】

(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可.【详解】(1)平面,平面,,四边形是菱形,,平面;又平面,所以平面平面.(2)设,连结,则,四边形是菱形,,,,设点到平面的距离为平面,,,解得,即点到平面的距离为;(3)由(1)得平面,为与平面所成角,平面,,与平面所成角的正切值为.【点睛】本题考查平面与平面垂直的证明、点到平面的距离以及直线与平面所成的角,求解点到平面的距离,常用的方法是等体积法,将问题转化为三棱锥的高来计算,考查空间想象能力与推理能力,属于中等题.20、(1);(2).【解析】

(1)对等式两边同时平方,利用平面向量数量积的定义以及数量积的运算性质,可以求出;(2)根据两个非零向量互相垂直等价于它们的数量积为零,可以得到方程,解方程可以求出的值.【详解】解:(1)由得,那么;解得或(舍去)∴;(2)由得,那么因此∴.【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论