版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年福建省厦门市高二(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)等比数列{an}中,a1=16,a2a4=16,则a5=()A.1 B.2 C.4 D.82.(5分)直线x+y+1=0被圆x2+y2=1所截得的弦长为()A.12 B.1 C.22 3.(5分)在(1+2x)5的展开式中,x3的系数为()A.8 B.10 C.80 D.1604.(5分)试验测得四组成对数据(xi,yi)的值分别为(﹣1,﹣1),(0,1),(1,2),(2,4),由此可得y关于x的经验回归方程为ŷ=1.6x+â根据经验回归方程预测,当A.8.4 B.8.6 C.8.7 D.95.(5分)甲、乙两选手进行乒乓球比赛,采取五局三胜制(先胜三局者获胜,比赛结束),如果每局比赛甲获胜的概率为p(0<p<1),乙获胜的概率为1﹣p,则甲选手以3:1获胜的概率为()A.C32p3C.C43p3(1-p) D.6.(5分)如图,太阳灶是一种将太阳光反射至一点用来加热水或食物的设备,上面装有抛物面形的反光镜,镜的轴截面是抛物线的一部分,已知太阳灶的口径(直径)为4m,深度为0.5m,则该抛物线顶点到焦点的距离为()A.0.25m B.0.5m C.1m D.2m7.(5分)把正方形纸片ABCD沿对角线AC折成直二面角,O,E,F分别为AC,AD,BC的中点,则折纸后∠EOF的大小为()A.60° B.90° C.120° D.150°8.(5分)直线l与两条曲线y=ex+1和y=ex+1均相切,则l的斜率为()A.12 B.1 C.2 D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分。(多选)9.(5分)函数f(x)的导函数f′(x)的图象如图所示,则()A.f(x)在区间(x2,x3)上单调递减 B.f(x)在x=x2处取得极大值 C.f(x)在区间(a,b)上有2个极大值点 D.f(x)在x=x1处取得最大值(多选)10.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则()A.AC⊥B1D B.A1C1∥平面B1CD C.三棱锥C1﹣B1CD的体积为16D.C1到平面B1CD的距离为2(多选)11.(5分)设A、B是随机试验的两个事件,P(A)=23,P(B)=3A.事件A与事件B互斥 B.事件A与事件B相互独立 C.P(A|B)=2D.P((多选)12.(5分)在平面直角坐标系xOy中,F1(﹣1,﹣1),F2(1,1),动点P满足|PF1|+|PF2|=4,则()A.P的轨迹方程为x2B.P的轨迹关于直线y=x对称 C.△PF1F2的面积的最大值为2 D.P的横坐标的取值范围为[-三、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知直线l的一个方向向量a→=(m,1,3),平面α的一个法向量b→=(1,n,1),若l∥α,则m+14.(5分)已知双曲线C:x2a2-y2b2=1(a>0,b>0)15.(5分)甲、乙、丙3个公司承包6项不同的工程,甲承包1项,乙承包2项,丙承包3项,则共有种承包方式(用数字作答).16.(5分)毕达哥拉斯树的生长方式如下:以边长为1的正方形的一边作为斜边,向外作等腰直角三角形,再以等腰直角三角形的两直角边为边向外作正方形,得到2个新的小正方形,实现了一次生长,再将这两个小正方形各按照上述方式生长,如此重复下去,则第n次生长得到的小正方形的周长的和为;11次生长后所有小正方形(包括第一个正方形)的周长的总和为.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知等差数列{an}的公差d≠0,其前n项和为Sn,若a1,a2,a5成等比数列,且S6=36.(1)求数列{an}的通项公式;(2)记Tn=118.(12分)随着全球新能源汽车市场蓬勃发展,中国在十余年间实现了“弯道超车”,新能源汽车产量连续7年位居世界第一.某新能源汽车企业改进并生产了某款纯电动车,该款电动车有白色和红色.为研究购车顾客的性别是否与其购买的车辆颜色有关,公司研究团队利用随机抽样的方法收集了购买该车型的男生和女生各60人的数据,得到成对样本数据的分类统计结果,如下表所示:性别车辆颜色白色红色女生4020男生5010(1)依据小概率值α=0.05的独立性检验,能否认为购车顾客的性别与其购买的车辆颜色有关联?(2)现从上述购买白色车辆的90名顾客中按性别比例分配的分层随机抽样抽取9人,从购买红色车辆的30名顾客中按性别比例分配的分层随机抽样抽取3人,并从这12人中依次抽取2人作为幸运嘉宾,求第二次抽到的嘉宾是男生且购买白色车辆的概率.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a临界值表:α0.10.050.010.0050.001xα2.7063.8416.6357.87910.82819.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,△ABC是正三角形,D为棱AC的中点,BD⊥AA1,平面BB1D交A1C1于点E.(1)证明:四边形BB1ED是矩形;(2)若AA1=AC,∠A1AC=60°,求平面ABB1A1与平面BB1ED的夹角的余弦值.20.(12分)某商场为促进消费,规定消费满一定金额可以参与抽奖活动.抽奖箱中有4个蓝球和4个红球,这些球除颜色外完全相同.有以下两种抽奖方案可供选择:初始奖池摸球方式奖励规则方案A30元不放回摸3次,每次摸出1个球每摸出一个红球,奖池金额增加50元,在抽奖结束后获得奖池所有金额方案B有放回摸3次,每次摸出1个球每摸出一个红球,奖池金额翻倍,在抽奖结束后获得奖池所有金额(1)若顾客选择方案A,求其所获得奖池金额X的分布列及数学期望.(2)以获得奖池金额的期望值为决策依据,顾客应该选择方案A还是方案B?21.(12分)已知函数f(x)=ex﹣ln(x+m)﹣1.(1)当m=1时,讨论f(x)的单调性;(2)若f(x)≥0,求m的取值范围.22.(12分)已知点N在曲线C:x28+y26=1上,O(1)求Γ的方程:(2)已知点P在曲线C上,点A,B在曲线Γ上,若四边形OAPB为平行四边形,则其面积是否为定值?若是,求出定值;若不是,说明理由
2022-2023学年福建省厦门市高二(下)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分。每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)等比数列{an}中,a1=16,a2a4=16,则a5=()A.1 B.2 C.4 D.8【解答】解:因为{an}是等比数列,依题意a1=16,a2a4=a1a5=16,所以a5=1.故选:A.2.(5分)直线x+y+1=0被圆x2+y2=1所截得的弦长为()A.12 B.1 C.22 【解答】解:圆x2+y2=1的圆心O(0,0),半径等于1,圆心到直线x+y+1=0的距离d=1故直线x+y+1=0被圆x2+y2=1所截得的弦长为2r2故选:D.3.(5分)在(1+2x)5的展开式中,x3的系数为()A.8 B.10 C.80 D.160【解答】解:展开式的通项公式Tk+1=C5k(2x)k=C5当k=3时,T4=C53•23x3=80x3,即故选:C.4.(5分)试验测得四组成对数据(xi,yi)的值分别为(﹣1,﹣1),(0,1),(1,2),(2,4),由此可得y关于x的经验回归方程为ŷ=1.6x+â根据经验回归方程预测,当A.8.4 B.8.6 C.8.7 D.9【解答】解:由条件可知,x=-1+0+1+24回归直线过点(x,y)=(1所以回归直线方程为ŷ=1.6当x=5时,ŷ故选:C.5.(5分)甲、乙两选手进行乒乓球比赛,采取五局三胜制(先胜三局者获胜,比赛结束),如果每局比赛甲获胜的概率为p(0<p<1),乙获胜的概率为1﹣p,则甲选手以3:1获胜的概率为()A.C32p3C.C43p3(1-p) D.【解答】解:甲选手以3:1获胜,说明前3场中甲赢了两场,输了一场,且第四场甲赢,故所求概率为C3故选:A.6.(5分)如图,太阳灶是一种将太阳光反射至一点用来加热水或食物的设备,上面装有抛物面形的反光镜,镜的轴截面是抛物线的一部分,已知太阳灶的口径(直径)为4m,深度为0.5m,则该抛物线顶点到焦点的距离为()A.0.25m B.0.5m C.1m D.2m【解答】解:以该抛物线顶点为原点建立平面直角坐标系,如图所示:设此抛物线方程为x2=2py(p>0),依题意点(2,0.5)在此抛物线上,所以2p⋅12=4,解得p故选:D.7.(5分)把正方形纸片ABCD沿对角线AC折成直二面角,O,E,F分别为AC,AD,BC的中点,则折纸后∠EOF的大小为()A.60° B.90° C.120° D.150°【解答】解:折起后的图形如下图所示,连接BO,DO,则BO⊥AC,DO⊥AC,又平面ABC⊥平面ADC,平面ABC∩平面ADC=AC,BO⊂平面ABC,∴BO⊥平面ADC,∴OD,OC,OB三直线两两垂直,分别以这三直线为x,y,z轴,建立空间直角坐标系,设正方形的对角线长为2,则可确定以下点坐标:O(0,0,0),A(0,﹣1,0),D(1,0,0),E(12,-12,0),∴OE→又0°≤<OE∴<OE∴∠EOF=120°.故选:C.8.(5分)直线l与两条曲线y=ex+1和y=ex+1均相切,则l的斜率为()A.12 B.1 C.2 D.【解答】解:由y=ex+1,可得y′=ex;由y=ex+1,可得y′=ex+1,设两个切点分别为(x1,ex1+1)故x1=x2+1,由x1≠x2,所以k=ex2故选:B.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分。(多选)9.(5分)函数f(x)的导函数f′(x)的图象如图所示,则()A.f(x)在区间(x2,x3)上单调递减 B.f(x)在x=x2处取得极大值 C.f(x)在区间(a,b)上有2个极大值点 D.f(x)在x=x1处取得最大值【解答】解:由导函数的图象可知:x∈[a,x2)时f′(x)>0,f(x)单调递增;x∈(x2,x3)时f′(x)<0,f(x)单调递减;x∈(x3,b]时f′(x)≥0,f(x)单调递增.故A,B正确,C,D错误.故选:AB.(多选)10.(5分)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则()A.AC⊥B1D B.A1C1∥平面B1CD C.三棱锥C1﹣B1CD的体积为16D.C1到平面B1CD的距离为2【解答】解:建立如图所示坐标系,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0),∵AC→∴AC→∴AC⊥B1D,A选项正确;设平面B1CD法向量为n→∵B1∴y-z=0-x+y-z=0令x=0,则y=1,z=1,可得平面B1CD法向量为n→∵A1∴A1C1→⋅n→=1×0+1×1+0×1=1,故A1C∵B1∴S三棱锥C1﹣B1CD的体积为:VC1-∵CC1→=(0,0,1),平面B1则点C1到平面B1CD的距离为d=|n→故选:ACD.(多选)11.(5分)设A、B是随机试验的两个事件,P(A)=23,P(B)=3A.事件A与事件B互斥 B.事件A与事件B相互独立 C.P(A|B)=2D.P(【解答】解:因为P(A∪B)=P(A)+P(B)﹣P(AB),所以P(AB)=P(A)+P(B)-P(A∪B)=23+因为P(A)P(B)=23×34=1因为P(A|B)=P(AB)P(B)=因为P(AB)=1-P(AB)=1-1故选:BCD.(多选)12.(5分)在平面直角坐标系xOy中,F1(﹣1,﹣1),F2(1,1),动点P满足|PF1|+|PF2|=4,则()A.P的轨迹方程为x2B.P的轨迹关于直线y=x对称 C.△PF1F2的面积的最大值为2 D.P的横坐标的取值范围为[-【解答】解:对于A,设P(x,y),则(x+1)2+(y+1)2+(x-1)2+(y-1)2=4对于B,由椭圆定义知P的轨迹是以F1,F2为焦点的椭圆,故F1,F2所在直线是椭圆的对称轴,故B正确.对于C,因为长半轴a=2,半焦距c=2,所以短半轴b=当点P在短轴顶点上,∠F1PF2=90°,此时△F1PF2的面积最大,最大值为2,故C正确.对于D,联立方程3x2+3y2-2xy-8=0x=m,得3y由Δ=﹣8m2+24≥0,得-3≤m≤3故选:BCD.三、填空题:本题共4小题,每小题5分,共20分。13.(5分)已知直线l的一个方向向量a→=(m,1,3),平面α的一个法向量b→=(1,n,1),若l∥α,则m+【解答】解:因为直线l的一个方向向量a→平面α的一个法向量b→=(1,n,1)且l∥所以a→⊥b→,所以a→所以m+n=﹣3.故答案为:﹣3.14.(5分)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的渐近线方程为y【解答】解:因为双曲线C:x2a2-y所以ba所以离心率e=c故答案为:515.(5分)甲、乙、丙3个公司承包6项不同的工程,甲承包1项,乙承包2项,丙承包3项,则共有60种承包方式(用数字作答).【解答】解:由题意得,不同的承包方案分步完成,先让甲承包1项,有C61=6所以由分步乘法原理可得共有6×10=60种方案,故答案为:60.16.(5分)毕达哥拉斯树的生长方式如下:以边长为1的正方形的一边作为斜边,向外作等腰直角三角形,再以等腰直角三角形的两直角边为边向外作正方形,得到2个新的小正方形,实现了一次生长,再将这两个小正方形各按照上述方式生长,如此重复下去,则第n次生长得到的小正方形的周长的和为(2)n+4;11次生长后所有小正方形(包括第一个正方形)的周长的总和为【解答】解:根据题意,每次生长的小正方形的个数,构成以2为首项,2为公比的等比数列,每次生长的小正方形的边长构成以22为首项,2每次生长的小正方形周长和依次构成等比数列,首项42,公比2故第n次生长得到的小正方形的周长的和为(211次生长后所有小正方形(包括第一个正方形)共12组,则其周长的总和为4+42故答案为:(2)n+4四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知等差数列{an}的公差d≠0,其前n项和为Sn,若a1,a2,a5成等比数列,且S6=36.(1)求数列{an}的通项公式;(2)记Tn=1【解答】解:(1)因为a1,a2,a5成等比数列,S6=36,所以(a1+d)2=所以an=a1+(n﹣1)d=1+(n﹣1)×2=2n﹣1;(2)证明:由1aiai+1=得Tn由n∈N*,有12n+1>0,所以1-118.(12分)随着全球新能源汽车市场蓬勃发展,中国在十余年间实现了“弯道超车”,新能源汽车产量连续7年位居世界第一.某新能源汽车企业改进并生产了某款纯电动车,该款电动车有白色和红色.为研究购车顾客的性别是否与其购买的车辆颜色有关,公司研究团队利用随机抽样的方法收集了购买该车型的男生和女生各60人的数据,得到成对样本数据的分类统计结果,如下表所示:性别车辆颜色白色红色女生4020男生5010(1)依据小概率值α=0.05的独立性检验,能否认为购车顾客的性别与其购买的车辆颜色有关联?(2)现从上述购买白色车辆的90名顾客中按性别比例分配的分层随机抽样抽取9人,从购买红色车辆的30名顾客中按性别比例分配的分层随机抽样抽取3人,并从这12人中依次抽取2人作为幸运嘉宾,求第二次抽到的嘉宾是男生且购买白色车辆的概率.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a临界值表:α0.10.050.010.0050.001xα2.7063.8416.6357.87910.828【解答】解:(1)零假设为H0:购车顾客的性别与其购买的车辆颜色无关联.根据列表中的数据,经计算得到χ2根据小概率值α=0.05的独立性检验,我们推断H0不成立,即认为购车顾客的性别与其购买的车辆颜色有关联,此推断犯错误的概率不大于0.05.(2)由题得抽取的12人中,是男生且购买白色车辆的有5人.设A=“第一次抽到的是男生且购买白色车辆”,B=“第二次抽到的是男生且购买白色车辆”.P(A)=512,P(B|A)=411,由全概率公式P(B)=P(A)⋅P(B|A)+P(A得P(B)=5所以第二次抽到的嘉宾是男生且购买白色车辆概率为51219.(12分)如图所示,在三棱柱ABC﹣A1B1C1中,△ABC是正三角形,D为棱AC的中点,BD⊥AA1,平面BB1D交A1C1于点E.(1)证明:四边形BB1ED是矩形;(2)若AA1=AC,∠A1AC=60°,求平面ABB1A1与平面BB1ED的夹角的余弦值.【解答】解:(1)证明:取A1C1的中点E,则点E为平面BB1D与棱A1C1的交点,连接B1E和ED,因为点D,E分别是AC和A1C1的中点,所以ED∥AA1,ED=AA1,因为BB1∥AA1,BB1=AA1,所以BB1∥ED,BB1=ED,所以四边形BB1ED是平行四边形,所以点E为平面BB1D与棱A1C1的交点,因为BD⊥AA1,ED∥AA1,所以BD⊥DE所以四边形BB1ED是矩形;(2)连接A1D,A1C,在正△ABC中,D为AC的中点,所以BD⊥AC,因为BD⊥AA1,AC∩AA1=A,AC,AA1⊂平面AA1C1C,所以BD⊥平面AA1C1C,因为AC=AA1,∠A1AC=60°,所以△A1AC为正三角形,因为D为棱AC的中点,所以A1D⊥AC,以D为坐标原点,分别以DB,DC,DA1所在的直线为x,y,z轴建立空间直角坐标系,设三棱柱的棱长为2,则A(0,-1,0),B(3所以AB→=(3设平面ABB1A1的法向量为m→则m→⋅AB→=0所以平面ABB1A1的一个法向量为m→设平面BB1ED的法向量为n→则n→⋅DB→=0所以平面BB1ED的一个法向量为n→设平面ABB1A1与平面BB1ED的夹角的大小为θ,则cosθ=|所以平面ABB1A1与平面BB1ED的夹角的余弦值为2520.(12分)某商场为促进消费,规定消费满一定金额可以参与抽奖活动.抽奖箱中有4个蓝球和4个红球,这些球除颜色外完全相同.有以下两种抽奖方案可供选择:初始奖池摸球方式奖励规则方案A30元不放回摸3次,每次摸出1个球每摸出一个红球,奖池金额增加50元,在抽奖结束后获得奖池所有金额方案B有放回摸3次,每次摸出1个球每摸出一个红球,奖池金额翻倍,在抽奖结束后获得奖池所有金额(1)若顾客选择方案A,求其所获得奖池金额X的分布列及数学期望.(2)以获得奖池金额的期望值为决策依据,顾客应该选择方案A还是方案B?【解答】解:(1)由题意可知X可能取值为30,80,130,180,则P(X=30)=C40P(X=130)=C42所以X的分布列为:X3080130180P1143737114所以E(X)=30×1(2)设顾客选方案B,所获得的金额为Y,则Y的可能取值为30,60,120,240,则P(Y=30)=C30P(Y=120)=C32所以E(Y)=30×1所以E(X)>E(Y),所以选择
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版七年级数学上册《整式的加减整 理与复习》示范公开课教学课件
- 2024年新款圆管涵订购合同3篇
- 主题班会课:疫情期间致努力的自己x课件
- 2024年商业综合体停车场服务外包及收益分成合同3篇
- 2025透水砖植草砖购销合同
- 2024年度冬季公共交通枢纽积雪清除与乘客服务合同下载3篇
- 2025物业管理委托合同范本
- 2024年智能家居系统技术开发合同
- 金融合同执行风险控制
- 2024年水稻批发交易协议版B版
- 教研组长培训会议
- 学前儿童卫生与保健-期末大作业:案例分析-国开-参考资料
- 滨州电动伸缩雨棚施工方案
- 24年国开建筑工程估价实训报告
- 医院消防系统维护保养服务投标方案(图文版)(技术方案)
- 花都区2023-2024年-2024年八年级上学期语文期末试卷
- 第七单元 课题1 燃料的燃烧(第一课时)九年级化学上册课件(人教版2024)
- 2025年健康素养知识竞赛题库(含答案)
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 学校食堂供货商合同的退出机制
- 蒋诗萌小品《谁杀死了周日》台词完整版
评论
0/150
提交评论