2025届百校联盟数学高一下期末调研模拟试题含解析_第1页
2025届百校联盟数学高一下期末调研模拟试题含解析_第2页
2025届百校联盟数学高一下期末调研模拟试题含解析_第3页
2025届百校联盟数学高一下期末调研模拟试题含解析_第4页
2025届百校联盟数学高一下期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届百校联盟数学高一下期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x

1

2

3

4

所减分数y

4.5

4

3

2.5

显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.252.若关于的不等式的解集为,则的取值范围是()A. B. C. D.3.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.4.已知集合,对于满足集合A的所有实数t,使不等式恒成立的x的取值范围为A. B.C. D.5.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④6.若角α的终边过点P(-3,-4),则cos(π-2α)的值为()A. B. C. D.7.已知数列中,,,且,则的值为()A. B. C. D.8.若变量满足约束条件则的最小值等于()A. B. C. D.29.已知角的终边经过点,则()A. B. C.-2 D.10.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则的值为____________.12.某几何体的三视图如图所示,则该几何体的体积为__________.13.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是14.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.15.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).16.函数的定义域是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.18.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.19.在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求内角B的大小;(2)设,,的最大值为5,求k的值.20.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.21.在平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为.(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于点,当长最小时,求直线的方程;(3)设是圆上任意两点,点关于轴的对称点,若直线分别交轴于点和,问是否为定值?若是,请求出该定值;若不是,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.2、C【解析】

根据对数的性质列不等式,根据一元二次不等式恒成立时,判别式和开口方向的要求列不等式组,解不等式组求得的取值范围.【详解】由得,即恒成立,由于时,在上不恒成立,故,解得.故选:C.【点睛】本小题主要考查对数函数的性质,考查一元二次不等式恒成立的条件,属于基础题.3、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.4、B【解析】

由条件求出t的范围,不等式变形为恒成立,即不等式恒成立,再由不等式的左边两个因式同为正或同为负处理.【详解】由得,,

不等式恒成立,即不等式恒成立,即不等式恒成立,

只需或恒成立,

只需或恒成立,

只需或即可.

故选:B.【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.5、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.6、C【解析】

由三角函数的定义得,再利用诱导公式以及二倍角余弦公式求解.【详解】由三角函数的定义,可得,则,故选C.【点睛】本题主要考查了三角函数的定义,以及二倍角的余弦公式的应用,着重考查了推理与运算能力,属于基础题.7、A【解析】

由递推关系,结合,,可求得,,的值,可得数列是一个周期为6的周期数列,进而可求的值。【详解】因为,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得数列是一个周期为6的周期数列,所以,故选A。【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题。8、A【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.9、B【解析】按三角函数的定义,有.10、B【解析】

根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【点睛】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意和任意角的三角函数的定义求出的值即可.【详解】由题意得角的终边经过点,则,所以,故答案为.【点睛】本题考查任意角的三角函数的定义,属于基础题.12、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.13、【解析】

利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.14、2【解析】

由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.15、①③【解析】

①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.16、【解析】

根据的值域为求解即可.【详解】由题.故定义域为.故答案为:【点睛】本题主要考查了反三角函数的定义域,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)根据定义域和对称性即可得出的值,求出的解的个数,利用定理得出所有根的和;(2)令,则为偶函数,于是的唯一零点为,于是,即可解出的值.【详解】解:(1)在上的图象关于直线对称,,令得,,即,.在上有7个零点,方程的所以根之和为.(2)令,则,是偶函数,的图象关于轴对称,即关于直线对称,只有1解,的唯一解为,即,,解得.【点睛】本题考查了函数零点与函数图象对称性的关系,属于基础题.18、(1)证明见解析;(2)证明见解析【解析】

(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.19、(1),(2)【解析】

解:(1)(3分)又在中,,所以,则………(5分)(2),.………………(8分)又,所以,所以.所以当时,的最大值为.………(10分)………(12分)20、(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论