2024届上海市大团中学数学高一下期末经典试题含解析_第1页
2024届上海市大团中学数学高一下期末经典试题含解析_第2页
2024届上海市大团中学数学高一下期末经典试题含解析_第3页
2024届上海市大团中学数学高一下期末经典试题含解析_第4页
2024届上海市大团中学数学高一下期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市大团中学数学高一下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B. C. D.2.对于不同的直线l、、及平面,下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则3.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等4.在中,,BC边上的高等于,则A. B. C. D.5.函数的零点所在的一个区间是().A. B. C. D.6.下列函数中最小正周期为的是()A. B. C. D.7.已知等差数列的前项和为,若,则的值为A.10 B.15 C.25 D.308.已知圆柱的轴截面为正方形,且该圆柱的侧面积为,则该圆柱的体积为A. B. C. D.9.在三棱柱中,底面,是正三角形,若,则该三棱柱外接球的表面积为()A. B. C. D.10.已知实数满足,那么的最小值为(

)A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.12.设是等差数列的前项和,若,,则公差(___).13.已知为的三个内角A,B,C的对边,向量,.若,且,则B=14.无限循环小数化成最简分数为________15.在中,,则______.16.已知向量满足,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某“双一流A类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)为感谢同学们对这项调查工作的支持,该校利用分层抽样的方法从样本的前两组中抽出6人,各赠送一份礼品,并从这6人中再抽取2人,各赠送某款智能手机1部,求获赠智能手机的2人月薪都不低于1.75万元的概率;(2)同一组数据用该区间的中点值作代表.(i)求这100人月薪收入的样本平均数x和样本方差s2(ii)该校在某地区就业的本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设Ω=[x-s-0.018,x+s+0.018),月薪落在区间Ω左侧的每人收取400元,月薪落在区间方案二:按每人一个月薪水的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?参考数据:174≈13.218.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.19.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.20.在等差数列{an}中,a1=1,公差d≠0,且a1,a2,a5是等比数列{bn}的前三项.(1)求数列{an}和{bn}的通项公式;(2)设cn=an·bn,求数列{cn}的前n项和Sn.21.已知直线:,一个圆的圆心在轴上且该圆与轴相切,该圆经过点.(1)求圆的方程;(2)求直线被圆截得的弦长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A2、C【解析】

由平面的基本性质及其推论得:对于选项C,可能l∥n或l与n相交或l与n异面,即选项C错误,得解.【详解】由平行公理4可得选项A正确,由线面垂直的性质可得选项B正确,由异面直线所成角的定义可得选项D正确,对于选项C,若l∥α,n∥α,则l∥n或l与n相交或l与n异面,即选项C错误,故选C.【点睛】本题考查了平面中线线、线面的关系及性质定理与推论的应用,属简单题.3、D【解析】

分别考虑与的极限,然后作比较.【详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【点睛】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.4、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5、B【解析】

判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.6、C【解析】

对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.7、B【解析】

直接利用等差数列的性质求出结果.【详解】等差数列{an}的前n项和为Sn,若S17=85,则:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故选:B.【点睛】本题考查的知识要点:等差数列的通项公式的应用,及性质的应用,主要考查学生的运算能力和转化能力,属于基础题.8、C【解析】

设圆柱的底面半径,该圆柱的高为,利用侧面积得到半径,再计算体积.【详解】设圆柱的底面半径.因为圆柱的轴截面为正方形,所以该圆柱的高为因为该圆柱的侧面积为,所以,解得,故该圆柱的体积为.故答案选C【点睛】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.9、C【解析】

设球心为,的中心为,求出与,利用勾股定理求出外接球的半径,代入球的表面积公式即可.【详解】设球心为,的中心为,则,,球的半径,所以球的表面积为.故选:C【点睛】本题考查多面体外接球问题,球的表面积公式,属于中档题.10、A【解析】

表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题12、【解析】

根据两个和的关系得到公差条件,解得结果.【详解】由题意可知,,即,又,两式相减得,.【点睛】本题考查等差数列和项的性质,考查基本分析求解能力,属基础题.13、【解析】

根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【详解】根据题意,由正弦定理可得则所以答案为。【点睛】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。14、【解析】

利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.15、【解析】

由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.16、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)23;(2)(i)2,0.0174【解析】

(1)根据频率分布直方图求出前2组中的人数,由分层抽样得抽取的人数,然后把6人编号,可写出任取2人的所有组合,也可得出获赠智能手机的2人月薪都不低于1.75万元的所有组合,从而可计算出概率.(2)根据频率分布直方图计算出均值和方差,然后求出区间Ω,结合频率分布直方图可计算出两方案收取的费用.【详解】(1)第一组有0.2×0.1×100=2人,第二组有1.0×0.1×100=10人.按照分层抽样抽6人时,第一组抽1人,记为A,第二组抽5人,记为B,C,D,E,F.从这6人中抽2人共有15种:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).获赠智能手机的2人月薪都不低于1.75万元的10种:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是获赠智能手机的2人月薪都超过1.75万元的概率P=10(2)(i)这100人月薪收入的样本平均数x和样本方差s2分别是s2(ii)方案一:s=月薪落在区间Ω左侧收活动费用约为(0.02+0.10)×400×50÷10000=0.24(万元);月薪落在区间Ω收活动费用约为(0.24+0.31+0.20)×600×50÷10000=2.25(万元);月薪落在区间Ω右侧收活动费用约为(0.09+0.04)×800×50÷10000=0.52(万元);、因此方案一,这50人共收活动费用约为3.01(万元).方案二:这50人共收活动费用约为50×0.03⋅x故方案一能收到更多的费用.【点睛】本题考查频率分布直方图,考查分层抽样,考查古典概型.属于基础题.这类问题在计算均值、方差时可用各组数据区间的中点处的值作为这组数据的估计值参与计算.18、(1)=;(2).【解析】

(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和公式,考查了累加法与恒成立问题、逻辑推理能力与计算能力,解决数列中的恒成立问题时,也常利用分离参数的方法,转化为求最值的问题求解.19、(1);(2).【解析】试题分析:(1)利用等差等比基本公式,计算数列的通项公式;(2)利用裂项相消法求和.试题解析:(1)设公差为,因为,,成等数列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.20、(1)bn=3n-1;(2)Sn=(n-1)·3n+1【解析】

(1)由a1,a2,a5是等比数列{bn}的前三项得,a22=a1·a5⇒(a1+d)2=a1·(a1+4d)··⇒a12+2a1d+d2=a12+4a1d⇒d2=2a1d,又d≠0,所以d=2a1=2,从而an=a1+(n-1)d=2n-1,则b1=a1=1,b2=a2=3,则等比数列{bn}的公比q=3,从而bn=3n-1(2)由(1)得,cn=an·bn=(2n-1)·3n-1,则Sn=1·1+3·3+5·32+7·33+…+(2n-1)·3n-1①3Sn=1·3+3·32+5·33+…+(2n-3)·3n-1+(2n-1)·3n②①-②得,-2Sn=1·1+2·3+2·32+2·

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论