版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣州市于都县二中数学高一下期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角是()A. B. C. D.2.在ΔABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,B=30°,ΔABC的面积为32,那么b=A.1+32 B.1+3 C.3.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.5.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π36.已知tan(α+π5A.1B.-57C.7.若直线过点,则此直线的倾斜角是()A. B. C. D.90。8.已知等比数列中,若,且成等差数列,则()A.2 B.2或32 C.2或-32 D.-19.若,,,则的最小值为()A. B. C. D.10.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.25二、填空题:本大题共6小题,每小题5分,共30分。11.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.12.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.13.设三棱锥满足,,则该三棱锥的体积的最大值为____________.14.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.15.过点作圆的切线,则切线的方程为_____.16.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.18.如图,在三棱锥中,,分别为,的中点,且.(1)证明:平面;(2)若平面平面,证明:.19.求过点且与圆相切的直线方程.20.己知,,若.(Ⅰ)求的最大值和对称轴;(Ⅱ)讨论在上的单调性.21.已知函数.(1)求不等式的解集;(2)若当时,恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先求斜率,即倾斜角的正切值,易得.【详解】,可知,即,故选B【点睛】一般直线方程求倾斜角将直线转换为斜截式直线方程易得斜率,然后再根据直线的斜率等于倾斜角的正切值易得倾斜角,属于简单题目.2、B【解析】试题分析:由余弦定理得b2==14ac=32⇒ac=6,因为a , 考点:余弦定理;三角形的面积公式.3、A【解析】
由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.4、C【解析】
将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【点睛】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.5、D【解析】
将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【点睛】本题考查利用几何概型求解概率问题,属于基础题.6、D【解析】∵α-β+π=(α+π∴tan=2+3tan(α-β)=7、A【解析】
根据两点间斜率公式,可求得斜率.再由斜率与倾斜角关系即可求得直线的倾斜角.【详解】直线过点则直线的斜率设倾斜角为,根据斜率与倾斜角关系可得由直线倾斜角可得故选:A【点睛】本题考查了直线斜率的求法,斜率与倾斜角关系,属于基础题.8、B【解析】
根据等差数列与等比数列的通项公式及性质,列出方程可得q的值,可得的值.【详解】解:设等比数列的公比为q(),成等差数列,,,,解得:,,,故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.9、B【解析】
根据题意,得出,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则当且仅当且即时取得最小值.故选B.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理化简,熟练应用基本不等式求解是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解析】
将|a+b二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【点睛】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.12、.【解析】
根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.13、【解析】
取中点,连,可证平面,,要使最大,只需求最大值,即可求解.【详解】取中点,连,所以,,,平面,平面,设中边上的高为,,当且仅当时,取等号.故答案为:.【点睛】本题考查锥体的体积计算,考查线面垂直的判定,属于中档题.14、【解析】
分别求出{}、{}的通项公式,再统一形式即可得解。【详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【点睛】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。15、或【解析】
求出圆的圆心与半径分别为:,,分别设出直线斜率存在与不存在情况下的直线方程,利用点到直线的距离等于半径即可得到答案.【详解】由圆的一般方程得到圆的圆心和半径分别为;,;(1)当过点的切线斜率不存在时,切线方程为:,此时圆心到直线的距离,故不与圆相切,不满足题意;(2)当过点的切线的斜率存在时,设切线方程为:,即为;由于直线与圆相切,所以圆心到切线的距离等于半径,即,解得:或,所以切线的方程为或;综述所述:切线的方程或【点睛】本题考查过圆外一点求圆的切线方程,解题关键是设出切线方程,利用圆心到切线的距离等于半径得到关系式,属于中档题.16、【解析】
求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)几何概型的计算公式求解即可;(2)求出该骰子先后抛掷两次的基本事件总数,根据数量积公式得出满足包含的基本事件个数,由古典概型概率公式求解即可.【详解】解:(1)由题意可知,任意向这一区间内掷一点,该点落在内哪个位置是等可能的.令,则由几何概型的计算公式可知:.(2)将一枚质地均匀的骰子先后抛掷两次,共有个基本事件.由,得满足包含的基本事件为,,,,,共6种情形,故.【点睛】本题主要考查了利用几何概型概率公式以及古典概型概率公式计算概率,属于中档题.18、(1)见解析(2)见解析【解析】
(1)先证明,再证明平面;(2)先证明平面,再证明.【详解】证明:(1)因为,分别为,的中点,所以.又平面,平面,所以平面.(2)因为,为中点,所以.又平面平面.平面平面,所以平面.又平面,所以.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平,属于基础题.19、直线方程为或【解析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。20、(1);,(2)在上单调递增,在上单调减.【解析】
(1)先由题意得到,再化简整理,结合三角函数的性质,即可求出结果;(2)根据三角函数的单调性,结合题中条件,即可求出结果.【详解】(1)所以最大值为,由,,所以对称轴,(2)当时,,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我因幼教而美丽示范演讲稿(3篇)
- 河道保护倡议书
- 2024年全国技术高校(烘焙)职业技能知识考试题库与答案
- 山东省烟台龙口市(五四制)2024-2025学年九年级上学期期中考试化学试题
- 甘肃省多校2024-2025学年高一上学期期中联考语文试卷(含答案)
- 2024-2025学年江阴市花园实验小学四年级上册期中试卷
- 四川省高考语文五年试题汇编-论述类文本阅读
- 实习教师工作职责合同范本
- 广告制作授权合同模板
- 学生安全责任协议书
- 格林公式(公开教学用)
- 看图写话二年级公开课已修改版
- AWS_D1.1焊接工艺评定记录中英文
- 安徽省淮北市地方婚礼流程资料
- 附件3-4欧曼金融服务经销商融资业务介绍
- 中医骨伤科学9肩周炎上肢伤筋
- 五年级分数乘法口算练习
- 客户服务管理七大原则
- [山东]建筑工程施工技术资料管理规程表格
- 《葫芦丝演奏的入门练习》教学设计
- 噪声伤害事故PPT课件
评论
0/150
提交评论