版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁大连市普兰店区2023-2024学年数学高一下期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若都是正数,则的最小值为().A.5 B.7 C.9 D.132.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>03.已知向量,满足,和的夹角为,则()A. B. C. D.14.已知集合,集合,则()A. B. C. D.5.的值为()A. B. C. D.6.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.7.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法8.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.9.设,则的取值范围是()A. B. C. D.10.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足约束条件,则的最大值为__________.12.已知向量、满足,,且,则与的夹角为________.13.已知单位向量与的夹角为,且,向量与的夹角为,则=.14.函数的单调增区间为_________.15.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________16.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,是函数的两个相邻的零点.(1)求;(2)若对任意,都有,求实数的取值范围.(3)若关于的方程在上有两个不同的解,求实数的取值范围.18.在中,角A,B,C所对的边分别为a,b,c,.(1)求角B;(2)若,求周长的取值范围.19.数列中,,,数列满足.(1)求数列中的前四项;(2)求证:数列是等差数列;(3)若,试判断数列是否有最小项,若有最小项,求出最小项.20.的内角的对边为,(1)求;(2)若求.21.已知是公差不为0的等差数列,,,成等比数列,且.(1)求数列的通项公式;(2)若,数列的前项和为,证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
把式子展开,合并同类项,运用基本不等式,可以求出的最小值.【详解】因为都是正数,所以,(当且仅当时取等号),故本题选C.【点睛】本题考查了基本不等式的应用,考查了数学运算能力.2、A【解析】
结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.3、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.4、D【解析】
先化简集合,再利用交集运算法则求.【详解】,,,故选:D.【点睛】本题考查集合的运算,属于基础题.5、C【解析】试题分析:.考点:诱导公式.6、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.7、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.8、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.9、B【解析】
由同向不等式的可加性求解即可.【详解】解:因为,所以,又,,所以,故选:B.【点睛】本题考查了不等式的性质,属基础题.10、C【解析】
对每一个选项进行判断,选出正确的答案.【详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【点睛】本题考查了不等式的性质,找出反例是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、57【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.12、【解析】
直接应用数量积的运算,求出与的夹角.【详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【点睛】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.13、【解析】试题分析:因为所以考点:向量数量积及夹角14、【解析】
先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.15、【解析】
由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.16、【解析】
作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【点睛】本题考查异面直线所成的角,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)先化简,再根据函数的周期求出的值,从而得到的解析式;(2)将问题转化为,根据三角函数的性质求出的最大值,即可求出实数的取值范围;(3)通过方程的解与函数图象之间的交点关系,可将题意转化为函数的图象与直线有两个交点,即可由图象求出实数的取值范围.【详解】(1).由题意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化为即,由,得时,,的最大值为2,∴要使方程在上有两个不同的解,即函数的图象与直线有两个交点,由图象可知,即,所以【点睛】本题主要考查三角函数的图象与性质的应用,以及利用二倍角公式、两角差的余弦公式、两角和的正弦公式进行三角恒等变换,同时还考查了转化与化归思想,数形结合思想的应用.18、(1);(2)【解析】
(1)根据辅助角公式和的范围,得到的值;(2)利用余弦定理和基本不等式,得到的范围,结合三角形三边关系,从而得到周长的取值范围.【详解】(1)因为,所以,即,因为,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根据三角形三边关系得,即,故所以周长的范围为.【点睛】本题考查辅助角公式,余弦定理解三角形,基本不等式求最值,三角形三边关系,属于中档题.19、(1),,,;(2)见解析;(3)有最小项,最小项是.【解析】
(1)由数列的递推公式,可计算出数列的前四项,代入,即可计算出数列中的前四项;(2)利用数列的递推公式计算出为常数,结合等差数列的定义可证明出数列是等差数列;(3)求出数列的通项公式,可求出,进而得出,利用作商法判断数列的单调性,从而可求出数列的最小项.【详解】(1)且,,,.,,,,;(2),而,,.因此,数列是首项为,公差为的等差数列;(3)由(2)得,则.,显然,,当时,,则;当时,,则;当时,,则;当且时,,即.,,所以,数列有最小项,最小项是.【点睛】本题考查利用数列的递推公式写出前若干项,同时也考查了等差数列的证明以及数列最小项的求解,涉及数列单调性的证明,考查推理能力与计算能力,属于中等题.20、(1);(2).【解析】
(1)由题目中告诉的,利用正弦定理则可得到,再结合余弦定理公式求出角的值.(2)根据第一问求得的的值和题目中告诉的角的值可求得角的值,再利用正弦定理可求得边和的值.【详解】(1)由正弦定理,得,由余弦定理,得,又所以.(2)由(1)知:,又所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商疫情应急管理预案
- 一年级下册数学教案-7 找规律(4)-人教新课标
- 2024年双边协议:市中心双层商业店铺租赁合同
- 大班健康公开课教案及教学反思《健康日》
- 《除数是两位数的除法》(教案)2023-2024学年数学四年级上册人教版
- 一年级下册数学教案-2.4《解决问题 例5》人教新课标
- 中班体育教案:推小车
- 虚拟现实体验展厅施工方案
- 2024年共享资源:媒体合作框架协议
- 2024年农业科技研究合作合同
- 企业工商过户合同模板
- 雨污水管合同模板
- 《篮球:行进间单手肩上投篮》教案(四篇)
- 建筑施工企业(安全管理)安全生产管理人员安全生产考试参考题及答案
- 2024-2025学年部编版初一上学期期中历史试卷与参考答案
- 职业技能大赛-鸿蒙移动应用开发赛初赛理论知识考试及答案
- 锅炉应急预案演练方案
- 2024山东高速集团限公司招聘367人高频难、易错点500题模拟试题附带答案详解
- 中国航天发展史主题班会 课件
- 【人教版】《劳动教育》二下 劳动项目一 洗头 课件
- 第三单元长方形和正方形(单元测试)-2024-2025学年三年级上册数学苏教版
评论
0/150
提交评论