




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届乐山市重点中学高一下数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定2.函数的图像的一条对称轴是()A. B. C. D.3.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为()A. B. C. D.4.函数y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-15.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.6.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.7.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)8.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则()A. B. C. D.9.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.2 B.3 C.4 D.510.函数,若方程恰有三个不同的解,记为,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为_______.12.若锐角满足则______.13.若则____________14.已知曲线与直线交于A,B两点,若直线OA,OB的倾斜角分别为、,则__________15.已知函数在时取得最小值,则________.16.在中,角所对边长分别为,若,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.18.若数列中存在三项,按一定次序排列构成等比数列,则称为“等比源数列”。(1)在无穷数列中,,,求数列的通项公式;(2)在(1)的结论下,试判断数列是否为“等比源数列”,并证明你的结论;(3)已知无穷数列为等差数列,且,(),求证:数列为“等比源数列”.19.如图,某广场中间有一块绿地,扇形所在圆的圆心为,半径为,,广场管理部门欲在绿地上修建观光小路:在上选一点,过修建与平行的小路,与平行的小路,设所修建的小路与的总长为,.(1)试将表示成的函数;(2)当取何值时,取最大值?求出的最大值.20.已知关于的不等式.(1)若不等式的解集为,求;(2)当时,解此不等式.21.函数.(1)求函数的图象的对称轴方程;(2)当时,不等式恒成立,求m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求均值,再根据标准差公式求标准差,最后比较大小.【详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【点睛】本题考查标准差,考查基本求解能力.2、C【解析】对称轴穿过曲线的最高点或最低点,把代入后得到,因而对称轴为,选.3、A【解析】
由且,易知动点的轨迹为以为邻边的平行四边形的内部(含边界),在中,由,利用余弦定理求得边,再由和,求得内切圆的半径,从而得到,再由动点的轨迹所覆盖的面积得解.【详解】因为且,根据向量加法的平行四边形运算法则,所以动点的轨迹为以为邻边的平行四边形的内部(含边界),因为在中,,所以由余弦定理得:,所以,即,解得:,,所以.设的内切圆的半径为,所以所以.所以.所以动点的轨迹所覆盖的面积为:.故选:A【点睛】本题主要考查了动点轨迹所覆盖的面积的求及正弦定理,余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.4、B【解析】
根据余弦函数有界性确定最值.【详解】因为-1≤cosx≤1,所以【点睛】本题考查余弦函数有界性以及函数最值,考查基本求解能力,属基本题.5、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.6、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.7、A【解析】
函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.8、D【解析】
由题意得到,再由两角差的余弦及同角三角函数的基本关系式化简求解.【详解】解:∵角与角均以Ox为始边,它们的终边关于y轴对称,
∴,
,
故选:D.【点睛】本题考查了两角差的余弦公式的应用,是基础题.9、C【解析】开始,输入,则,判断,否,循环,,则,判断,否,循环,则,判断,否,循环,则,判断,是,输出,结束.故选择C.10、D【解析】
由方程恰有三个不同的解,作出的图象,确定,的取值范围,得到的对称性,利用数形结合进行求解即可.【详解】设
作出函数的图象如图:由
则当
时
,,
即函数的一条对称轴为
,要使方程恰有三个不同的解,则
,
此时
,
关于
对称,则
当
,即
,则
则
的取值范围是,选D.【点睛】本题主要考查了方程与函数,数学结合是解决本题的关键,数学结合也是数学中比较重要的一种思想方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.12、【解析】
由已知利用同角三角函数基本关系式可求,的值,利用两角差的余弦公式即可计算得解.【详解】、为锐角,,,,,,.故答案为:.【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.13、【解析】因为,所以=.故填.14、【解析】
曲线即圆曲线的上半部分,因为圆是单位圆,所以,,,,联立曲线与直线方程,消元后根据韦达定理与直线方程代入即可求解.【详解】由消去得,则,由三角函数的定义得故.【点睛】本题主要考查三角函数的定义,直线与圆的应用.此题关键在于曲线的识别与三角函数定义的应用.15、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式16、【解析】
根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值,最小值为,最小正周期;(2)【解析】
(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.18、(1);(2)不是,证明见解析;(3)证明见解析.【解析】
(1)由,可得出,则数列为等比数列,然后利用等比数列的通项公式可间接求出;(2)假设数列为“等比源数列”,则此数列中存在三项成等比数列,可得出,展开后得出,然后利用数的奇偶性即可得出结论;(3)设等差数列的公差为,假设存在三项使得,展开得出,从而可得知,当,时,原命题成立.【详解】(1),得,即,且.所以,数列是以为首项,以为公比的等比数列,则,因此,;(2)数列不是“等比源数列”,下面用反证法来证明.假设数列是“等比源数列”,则存在三项、、,设.由于数列为单调递增的正项数列,则,所以.得,化简得,等式两边同时除以得,,且、、,则,,,,则为偶数,为奇数,等式不成立.因此,数列中不存在任何三项,按一定的顺序排列构成“等比源数列”;(3)不妨设等差数列的公差.当时,等差数列为非零常数列,此时,数列为“等比源数列”;当时,,则且,数列中必有一项,为了使得数列为“等比源数列”,只需数列中存在第项、第项使得,且有,即,,当时,即当,时,等式成立,所以,数列中存在、、成等比数列,因此,等差数列是“等比源数列”.【点睛】本题考查数列新定义“等比源数列”的应用,同时也考查了利用待定系数法求数列的通项,也考查“等比源数列”的证明,考查计算能力与推理能力,属于难题.19、(1),;(2)时,.【解析】
(1)由扇形的半径为,在中,,则,利用正弦定理求出、,从而可得出函数;(2)利用三角恒等变换思想,可得出,,利用正弦函数的单调性与最值即可求出的最大值.【详解】(1)由于扇形的半径为,,在中,,由正弦定理,,同理.,;(2),.,,当,即时,.【点睛】本题考查三角函数的实际应用,考查正弦定理与三角恒等变换思想的应用,解题的关键就是利用三角恒等变换思想将三角函数解析式化简,考查分析问题和解决问题的能力,属于中等题.20、(1)2(2)时,,时,,时,不等式的解集为空集,时,,时,.【解析】
(1)根据不等式的解集和韦达定理,可列出关于a的方程组,解得a;(2)不等式化为,讨论a的取值,从而求得不等式的解集。【详解】(1)由题得,,解集为,则有,解得;(2)由题,:当时,不等式化为,解得;当时,不等式等价于,若,解得;若,解得,若,解得;当时,不等式等价于,解得或.综上,时,不等式的解集为,时,不等式的解集为,时,不等式的解集为空集,时,不等式的解集为,时,不等式的解集为.【点睛】本题考查一元二次不等式的解法与应用,以及通过讨论参数取值求不等式的解集,有一定的难度。21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国公司授权经销合同范例
- 电子产品采购合同(简易范本)
- 房屋托管合同版:条款详解
- 建筑幕墙维修保养合同
- 合同:国产化项目-进口直流电机电刷
- 新建停车场业主与开发商委托合同
- 婚内子女抚养合同范本
- 基础设施建设项目土地征用合同样本
- 家庭分家析产合同全文
- 20 蜘蛛开店(教学设计)-2023-2024学年统编版语文二年级下册
- 高考英语语法考点梳理
- 《护患沟通》课件
- 《篮球防守脚步移动技术 滑步》教案
- 完整版项目部组织机构图
- 人工智能客服机器人使用手册
- (新版)拖拉机驾驶证科目一知识考试题库500题(含答案)
- (人卫版第九版传染病学总论(一))课件
- 工业机器人仿真与离线编程项目-8-KUKA-Sim-Pro-软件的介绍及基本操作
- 2023年江苏省镇江市中考数学试卷及答案
- 高校辅导员招聘笔试试题及答案
- 密目网覆盖施工方案
评论
0/150
提交评论