版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省文山马关实验高级中学高一数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象与函数的图象交点的个数为()A. B. C. D.2.在ΔABC中,角A、B、C所对的边分别为a、b、c,A=45°,B=30°,b=2,则a=()A.2 B.63 C.223.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.44.在中,,,,则为()A. B. C. D.5.已知向量,,若,则的值为()A. B.1 C. D.6.若干个人站成一排,其中为互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”7.若a,b,c∈R,且满足a>b>c,则下列不等式成立的是()A.1a<C.ac28.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件9.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.10.()A.4 B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足则的最小值为__________.12.数列的前项和为,,,则________.13.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,,,,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是.(下表是随机数表第行至第行)84421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342996602795414.一个三角形的三条边成等比数列,那么,公比q的取值范围是__________.15.在△中,三个内角、、的对边分别为、、,若,,,则________16.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.18.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.19.已知.(1)当时,解不等式;(2)若不等式的解集为,求实数的值.20.已知数列满足,.(Ⅰ)求,的值,并证明:0<≤1;(Ⅱ)证明:;(Ⅲ)证明:.21.已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.2、C【解析】
利用正弦定理得到答案.【详解】asin故答案选C【点睛】本题考查了正弦定理,意在考查学生的计算能力.3、B【解析】
判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.4、D【解析】
利用正弦定理得到答案.【详解】根据正弦定理:即:答案选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.5、B【解析】
直接利用向量的数量积列出方程求解即可.【详解】向量,,若,可得2﹣2=0,解得=1,故选B.【点睛】本题考查向量的数量积的应用,考查计算能力,属于基础题.6、A【解析】
根据不能同时发生的两个事件,叫互斥事件,依次判断.【详解】根据互斥事件不能同时发生,判断A是互斥事件;B、C、D中两事件能同时发生,故不是互斥事件;
故选A.【点睛】本题考查了互斥事件的定义.是基础题.7、C【解析】
通过反例可依次排除A,B,D选项;根据不等式的性质可判断出C正确.【详解】A选项:若a=1,b=-2,则1a>1B选项:若a=1,b=12,则1aC选项:c2+1>0又a>b∴ac2D选项:当c=0时,ac=bc本题正确选项:C【点睛】本题考查不等式性质的应用,解决此类问题通常采用排除法,利用反例来排除错误选项即可,属于基础题.8、C【解析】
利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【点睛】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.9、D【解析】
设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.10、A【解析】
分别利用和差公式计算,相加得答案.【详解】故答案为A【点睛】本题考查了正切的和差公式,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
本题首先可以根据题意绘出不等式组表示的平面区域,然后结合目标函数的几何性质,找出目标函数取最小值所过的点,即可得出结果。【详解】绘制不等式组表示的平面区域如图阴影部分所示,结合目标函数的几何意义可知,目标函数在点处取得最小值,即。【点睛】本题考查根据不等式组表示的平面区域来求目标函数的最值,能否绘出不等式组表示的平面区域是解决本题的关键,考查数形结合思想,是简单题。12、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.13、1【解析】试题分析:依据随机数表,抽取的编号依次为785,567,199,1.第四粒编号为1.考点:随机数表.14、【解析】
设三边按递增顺序排列为,其中.则,即.解得.由q≥1知q的取值范围是1≤q<.设三边按递减顺序排列为,其中.则,即.解得.综上所述,.15、【解析】
利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.16、【解析】
计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.3,直方图见解析;(2)121;(3).【解析】
(1)频率分布直方图中,小矩形的面积等于这一组的频率,而频率的和等于1,可求出分数在内的频率,即可求出矩形的高,画出图象即可;(2)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相差再求出它们的和即可求出本次考试的平均分;(3)先计算、分数段的人数,然后按照比例进行抽取,设从样本中任取2人,至多有1人在分数段为事件,然后列出基本事件空间包含的基本事件,以及事件包含的基本事件,最后将包含事件的个数求出题目比值即可.【详解】(1)分数在[120,130)内的频率为:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,补全后的直方图如下:(2)平均分为:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为:60×0.15=9人,[120,130)分数段的人数为:60×0.3=18人.∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人并分别记为a,b,c,d;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15种.事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种,∴.18、(1)详见解析(2)详见解析(2)【解析】
试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是线BD与平面EBC所成的角.经过计算即可得出.(3)利用体积公式即可得出.试题解析:(1)如图,连接,易知为的中点.因为,分别是和的中点,所以,因为平面,平面,所以平面.(2)证明:因为四边形为正方形,所以.又因为平面平面,所以平面.所以.又因为,所以.所以平面.从而平面平面.(3)取AB中点N,连接,因为,所以,且.又平面平面,所以平面.因为是四棱锥,所以.即几何体的体积.点睛:本题考查了正方形的性质、线面,面面平行垂直的判定与性质定理、三棱锥的体积计算公式、线面角的求法,考查了推理能力与计算能力,属于中档题.19、(1);(2)【解析】
(1)根据求解一元二次不等式的方法直接求解;(2)根据一元二次不等式的解就是对应一元二次方程的根这一特点列方程求解.【详解】解:(1),解得.∴不等式的解集为.(2)∵的解集为,∴方程的两根为0,3,∴解得∴,的值分别为3,1.【点睛】(1)对于形如的一元二次不等式,解集对应的形式是:“两根之内”;若是,解集对应的形式是:“两根之外”;(2)一元二次不等式解集的两个端点值,是一元二次方程的两个解同时也是二次函数图象与轴交点的横坐标.20、(Ⅰ)见证明;(Ⅱ)见证明;(Ⅲ)见证明【解析】
(I)直接代入计算得,利用得从而可证结论;(II)证明,即可;(III)由(II)可得,即,,应用累加法可得,从而证得结论.【详解】解:(Ⅰ)由已知得,.因为所以.所以又因为所以与同号.又因为>0所以.(Ⅱ)因为又因为,所以.同理又因为,所以综上,(Ⅲ)证明:由(Ⅱ)可得所以,即所以,,...,累加可得所以由(Ⅱ)可得所以,即所以,,...,累加可得所以即综上所述.【点睛】本题考查数列递推公式,考查数列中的不等式证明.第(I)问题关键是证明数列是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管理高尔夫课程
- 天津市乐器店物业维修养护指南
- 艺术品交易签约管理办法
- 人才发展服务公司管理手册
- 幼儿园合作补充协议
- 企业形象片监制合同模板
- 泥工改造安装合同
- 创意办公二手房交易范本
- 风机设备投标样本
- 瑜伽馆地坪施工合同
- 2024年全国营养师技能大赛(云南赛区)理论考试原题库(含答案)
- 劳务派遣外包人力资源采购投标方案(技术方案)
- 4.4 对数函数(精练)(解析版)-人教版高中数学精讲精练必修一
- 2024年秋季学期新湘教版七年级上册数学课件 第4章 图形的认识 4.1 立体图形与平面图形
- 天翼云高级解决方案架构师认证资格考试题库及答案
- 项目学习主题活动(二) 天宫空间站轨道长度变了多少
- 2024人形机器人产业半年研究报告
- 行道树的选择标准(2023年甘肃中考语文试卷说明文阅读题及答案)
- Unit 4 Fun in the sun Reading for writing 教学设计 2024-2025学年仁爱版英语七年级上册
- 2024年汽车维修工高级理论考试题库带答案(满分必刷)
- 国家开放大学电大《国际私法》机考4套真题题库及答案8
评论
0/150
提交评论