版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学必修二《第九章统计》复习教案《9.1随机抽样》复习教案9.1.1简单随机抽样学习目标核心素养1.通过实例,了解简单随机抽样的含义及其解决问题的过程.(重点)2.掌握两种简单随机抽样方法:抽签法和随机数法.(重点、难点)通过对简单随机抽样的概念和应用的学习,培养学生数学数据分析素养.【自主预习】1.全面调查和抽样调查调查方式普查抽查调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查方法,称为抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:我们把从总体中抽取的那部分个体称为样本.样本量:样本中包含的个体的数量称为样本量2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样简单随机抽样:放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以使卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.4.随机数法(1)定义:先把总体中的个体编号,用随机数根据产生与总体中个体数量相等的整数随机数,把产生的随机数作为抽中的编号,并剔除重复的编号,直到抽足样本所需要的个体数.(2)产生随机数的方法:①用随机试验生成随机数,②用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,YN,则为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Yk,其中Yi出现的频数fi(i=1,2,…,k),则总体均值还可以写成加权平均数的形式eq\x\to(Y)=.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,yn,则称eq\o(y,\s\up6(-))=.思考1:采用抽签法抽取样本时,为什么将编号写在外观、质地等无差别的小纸片(也可以使卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌?[提示]为了使每个号签被抽取的可能性相等,保证抽样的公平性.思考2:抽签法有什么优点和缺点?[提示](1)优点:简单易行,当总体的个体数不多时,使总体处于“搅拌”均匀的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体,当总体容量较大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.1.使用简单随机抽样从1000件产品中抽出50件进行某项检查,合适的抽样方法是()A.抽签法 B.随机数法C.随机抽样法 D.以上都不对B[由于总体相对较大,样本容量较小,故采用随机数法较为合适.]2.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)D[A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.]3.用抽签法抽取的一个容量为5的样本,它们的变量值分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.6C[eq\x\to(y)=eq\f(2+4+5+7+9,5)=5.4.]【合作探究】简单随机抽样的判断【例1】下列5个抽样中,简单随机抽样的个数是()①一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某班从50名同学中,选出5名数学成绩最优秀的同学代表本班参加数学竞赛;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.A.0B.1C.2D.3B[根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为一儿童从玩具箱的20件玩具中任意拿一件玩,玩后放回再拿一件,连续玩了5件它不是“逐个”抽取.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③不是简单随机抽样.因为5名同学是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.④是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,等可能的抽样.综上,只有④是简单随机抽样.]简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种等可能的抽样.如果三个特征有一个不满足,就不是简单随机抽样.1.为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾,这种抽查是()A.简单随机抽样 B.抽签法C.随机数法 D.以上都不对D[由于不知道总体的情况(包括总体个数),因此不属于简单随机抽样.]抽签法的应用【例2】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.[解]第一步,将20架钢琴编号,号码是01,02,…,20.第二步,将号码分别写在外观、质地等无差别的小纸片上作为号签.第三步,将小纸片放入一个不透明的盒里,充分搅匀.第四步,从盒中不放回地逐个抽取5个号签,使与号签上编号相同的钢琴进入样本.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.2.应用抽签法时应注意的问题:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)根据实际需要采用有放回或无放回抽取.2.为迎接2022年北京冬奥会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.[解](1)将30名志愿者编号,号码分别是01,02,…,30;(2)将号码分别写在外观、质地等无差别的小纸片上作为号签.(3)将小纸片放入一个不透明的盒里,充分搅匀.(4)从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.随机数法及其综合应用[探究问题]1.某工厂有2000名工人,从中选取20人参加职工代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数法?为什么?[提示]采用随机数法,因为工人人数较大,制作号签比较麻烦,所以决定用随机数法.2.某工厂的质检人员采用随机数法对生产的100件产品进行检查,若抽取10件进行检查,应如何对100件产品编号?[提示]可对这100件产品编号为:001,002,003,…,100.【例3】某市质监局要检查某公司某个时间段生产的500克袋装牛奶的质量是否达标,现从500袋牛奶中抽取10袋进行检验,(1)利用随机数法抽取样本时,应如何操作?(2)如果用随机试验生成部分随机数如下所示,据此写出应抽取的袋装牛奶的编号.(3)质监局对该公司生产的袋装牛奶检验的质量指标有两个:一是每袋牛奶的质量满足500±5g,二是10袋质量的平均数≥500g,同时满足这两个指标,才认为公司生产的牛奶为合格,否则为不合格.经过检测得到10袋袋装牛奶的质量(单位:g)为:502,500,499,497,503,499,501,500,498,499.计算这个样本的平均数,并按照以上标准判断牛奶质量是否合格.[解](1)第一步,将500袋牛奶编号为001,002,…,500.第二步,用随机数工具产生1~500范围内的随机数.第三步,把产生的随机数作为抽中的编号,使编号对应的袋装牛奶进入样本.第四步,重复上述过程,直到产生不同的编号等于样本所需要的数量.(2)应抽取的袋装牛奶的编号为:162,277,354,384,263,491,175,331,455,068.(3)eq\x\to(y)=eq\f(502+500+499+497+503+499+501+500+498+499,10)=499.8<500,所以该公司的牛奶质量不合格.1.该公司对质监部门的这种检验方法并不认可,公司自己质检部门抽取了100袋牛奶按照本例(3)检验标准,统计得到这100袋袋装牛奶的质量都满足500±5g,平均数为500.4g,你认为质监局和公司的检验结果哪一个更可靠?为什么?[解]该公司的质检部门的检验结果更可靠.因为质监局抽取的样本较少,不能很好地反映总体,该公司的质检部门抽取的样本量较大,一般来说,样本量大的会好于样本量小的.尤其是样本量不大时,增加样本量可以较好地提高估计的效果.2.为进一步加强公司生产牛奶的质量,规定袋装牛奶的质量变量值为Yi=eq\b\lc\{\rc\(\a\vs4\al\co1(1,质量不低于500g,0,质量低于500g)),公司质监部门又抽取了一个容量为50的样本,其质量变量值如下:11101111001010101010111101011100010101001001010101据此估计该公司生产的袋装牛奶质量不低于500g的比例.[解]由样本观测数据,计算可得样本平均数为eq\x\to(y)=0.56,据此估计该公司生产的袋装牛奶质量不低于500g的比例约为0.56.随机数法的注意点(1)当总体容量较大,样本容量不大时,可用随机数法抽取样本.(2)用随机数法抽取样本,为了方便,在编号时需统一编号的位数.(3)掌握利用信息技术产生随机数的方法和规则.1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽取、等可能抽取.2.一个抽样试验能否用抽签法,关键看总体和样本的容量是否较少.【课堂达标练习】1.判断正误(1)抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.()(2)利用随机数法抽取样本时,选定的初始数是任意的,但读数的方向只能是从左向右读.()(3)利用随机数法抽取样本时,若一共有总体容量为100,则给每个个体分别编号为1,2,3,…,100.()[提示](1)正确.(2)错误.读数的方向也是任意的.(3)错误.应编号为00,01,02,…,99.[答案](1)√(2)×(3)×2.抽签法确保样本代表性的关键是()A.制签 B.搅拌均匀C.逐一抽取 D.抽取不放回B[若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.]3.在总体为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N的值为.120[据题意eq\f(30,N)=0.25,故N=120.]4.某大学要去贫困地区参加支教活动,需要从每班选10名男生,8名女生参加,某班有男生32名,女生28名,试用抽签法确定该班参加支教活动的同学.[解]第一步,将32名男生从0到31进行编号.第二步,用相同的小纸片制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加支教活动.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加支教活动.9.1.2分层随机抽样学习目标核心素养1.通过实例,了解分层随机抽样的特点和适用范围.(重点)2.了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.(重点,难点)3.结合具体实例,掌握分层随机抽样的样本均值.(重点)1.通过对分层随机抽样的学习,培养学生数学抽象素养.2.通过对分层随机抽样的应用,培养学生数据分析素养.【自主预习】1.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.2.样本平均数的计算公式在分层随机抽样中,第1层和第2层包含的个体数分别为M和N,抽取的样本量分别为m和n,第1层和第2层样本的平均数分别为eq\x\to(x)和eq\x\to(y),则样本的平均数eq\x\to(ω)=eq\f(m,m+n)eq\o(x,\s\up6(-))+eq\f(n,m+n)eq\o(y,\s\up6(-))=eq\f(M,M+N)eq\o(x,\s\up6(-))+eq\f(N,M+N)eq\o(y,\s\up6(-)).思考1:分层随机抽样的总体具有什么特性?[提示]分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体.思考2:简单随机抽样和分层随机抽样有什么区别和联系?[提示]区别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按比例分配抽取样本.联系:(1)抽样过程中每个个体被抽到的可能性相等;(2)每次抽出个体后不再将它放回,即不放回抽样.1.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层随机抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15C[样本中松树苗为4000×eq\f(150,30000)=4000×eq\f(1,200)=20(棵).]2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.简单随机抽样B.抽签法C.随机数表法D.分层随机抽样D[从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.]3.某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层随机抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取名学生.40[C专业的学生有1200-380-420=400(名),由分层随机抽样原理,应抽取120×eq\f(400,1200)=40(名).]【合作探究】对分层随机抽样概念的理解【例1】(1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适()A.抽签法法 B.随机数法C.简单随机抽样法 D.分层随机抽样法(2)分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同(1)D(2)C[(1)总体由差异明显的三部分构成,应选用分层随机抽样法.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.]1.使用分层随机抽样的前提分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且每一个个体属于且仅属于一个子总体,而层内个体间差异较小.2.使用分层随机抽样应遵循的原则(1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则;(2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.1.下列问题中,最适合用分层随机抽样抽取样本的是()A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量B[A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层随机抽样;B中总体所含个体差异明显,适合用分层随机抽样.]分层随机抽样的应用【例2】某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层随机抽样的方法抽取,写出抽样过程.[解]抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为eq\f(20,160)=eq\f(1,8).第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×eq\f(1,8)=2(人);从教师中抽取112×eq\f(1,8)=14(人);从后勤人员中抽取32×eq\f(1,8)=4(人).第三步,采用简单随机抽样的方法,抽取行政人员2人,教师人员14人,后勤人员4人.第四步,把抽取的个体组合在一起构成所需样本.分层随机抽样的步骤2.某一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层随机抽样的方法.具体过程如下:第一步,将3万人分为5层,其中一个乡镇为一层.第二步,按照样本容量的比例求得各乡镇应抽取的人数分别为60人,40人,100人,40人,60人.第三步,按照各层抽取的人数随机抽取各乡镇应抽取的样本.第四步,将300人合到一起,即得到一个样本.分层随机抽样中的计算问题[探究问题]1.在分层随机抽样中,N为总体容量,n为样本容量,如何确定各层的个体数?[提示]每层抽取的个体的个数为ni=Ni×eq\f(n,N),其中Ni为第i(i=1,2,…,k)层的个体数,eq\f(n,N)为抽样比.2.在分层随机抽样中,总体容量、样本容量、各层的个体数、各层抽取的样本数这四者之间有何关系?[提示]设总体容量为N,样本容量为n,第i(i=1,2,…,k)层的个体数为Ni,各层抽取的样本数为ni,则eq\f(ni,Ni)=eq\f(n,N),这四者中,已知其中三个可以求出另外一个.【例3】(1)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层随机抽样调查,假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808C.1212D.2012(2)将一个总体分为A,B,C三层,其个体数之比为5∶3∶2.若用分层随机抽样方法抽取容量为100的样本,则应从C中抽取个个体.(3)分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为.(1)B(2)20(3)6[(1)因为甲社区有驾驶员96人,并且在甲社区抽取的驾驶员的人数为12人,所以四个社区抽取驾驶员的比例为eq\f(12,96)=eq\f(1,8),所以驾驶员的总人数为(12+21+25+43)÷eq\f(1,8)=808(人).(2)∵A,B,C三层个体数之比为5∶3∶2,又有总体中每个个体被抽到的概率相等,∴分层随机抽样应从C中抽取100×eq\f(2,10)=20(个)个体.(3)eq\x\to(ω)=eq\f(20,20+30)×3+eq\f(30,20+30)×8=6.]在例3(2)中,A,B,C三层的样本的平均数分别为15,30,20,则样本的平均数为.20.5[由题意可知样本的平均数为eq\x\to(ω)=eq\f(5,5+3+2)×15+eq\f(3,5+3+2)×30+eq\f(2,5+3+2)×20=20.5.]进行分层随机抽样的相关计算时,常用到的2个关系(1)eq\f(样本容量n,总体的个数N)=eq\f(该层抽取的个体数,该层的个体数);(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.(3)样本的平均数和各层的样本平均数的关系为:eq\x\to(ω)=eq\f(m,m+n)eq\o(x,\s\up6(-))+eq\f(n,m+n)eq\o(y,\s\up6(-))=eq\f(M,M+N)eq\o(x,\s\up6(-))+eq\f(N,M+N)eq\o(y,\s\up6(-)).1.对于分层随机抽样问题,常利用以下关系式求解:eq\f(样本容量n,总体容量N)=eq\f(各层抽取的样本数,该层的容量).2.选择抽样方法的规律:(1)当总体和样本量都较小时,采用抽签法;当总体量较大,样本量较小时,采用随机数法;(2)当总体可以分为若干个层时,采用分层随机抽样.【课堂达标练习】1.判断正误(1)在统计实践中选择哪种抽样方法关键是看总体容量的大小.()(2)分层随机抽样中,个体数量较少的层抽取的样本数量较少,这是不公平的.()(3)从全班50名同学中抽取5人调查作业完成情况适合用分层随机抽样.()[提示](1)错误.在统计实践中选择哪种抽样方法除看总体和样本容量大小外,还要依据总体的构成情况.(2)错误.根据抽样的意义,对每个个体都是公平的.(3)错误.适合用简单随机抽样.[答案](1)×(2)×(3)×2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法 B.简单随机抽样C.分层随机抽样 D.随机数法C[根据年级不同产生差异及按人数比例抽取易知应为分层随机抽样.]3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层随机抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人,30人,30人 B.30人,45人,15人C.20人,30人,40人 D.30人,50人,10人B[先求抽样比eq\f(n,N)=eq\f(90,3600+5400+1800)=eq\f(1,120),再各层按抽样比分别抽取,甲校抽取3600×eq\f(1,120)=30(人),乙校抽取5400×eq\f(1,120)=45(人),丙校抽取1800×eq\f(1,120)=15(人),故选B.]4.某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层随机抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取名学生.60[根据题意,应从一年级本科生中抽取的人数为eq\f(4,4+5+5+6)×300=60.]5.一批产品中有一级品100个,二级品60个,三级品40个,用分层随机抽样法从这批产品中抽取一个容量为20的样本.请利用分层随机抽样的方法抽取,写出抽样过程.[解]第一步,确定抽样比,因为100+60+40=200,所以eq\f(20,200)=eq\f(1,10),第二步,确定各层抽取的样本数,一级品:100×eq\f(1,10)=10,二级品:60×eq\f(1,10)=6,三级品:40×eq\f(1,10)=4.第三步:采用简单随机抽样的方法,从各层分别抽取样本.第四步,把抽取的个体组合在一起构成所需样本.9.1.3获取数据的途径学习目标核心素养1.知道获取数据的基本途径包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.(重点)2.了解总体、样本、样本量的概念,了解数据的随机性.(重点)1.通过对获取数据的途径的学习,培养学生数据分析的素养.2.在获取数据的过程中,培养学生数学建模的核心素养.【自主预习】获取数据的基本途径获取数据的基本途径适用类型注意问题通过调查获取数据对于有限总体问题,我们一般通过抽样调查或普查的方法获取数据要充分有效地利用背景信息选择或创建更好的抽样方法,并有效地避免抽样过程中的人为错误通过试验获取数据没有现存的数据可以查询严格控制实验环境,通过精心的设计安排试验,以提高数据质量通过观察获取数据自然现象要通过长久的持续观察获取数据通过查询获得数据众多专家研究过,其收集的数据有所存储必须根据问题背景知识“清洗数据”,去伪存真思考1:利用统计报表和年鉴属于那中获取数据的途径?[提示]属于通过查询获取数据的途径.思考2:要了解一种新型灯管的寿命,能通过观察获取数据吗?[提示]不能,应该通过试验获取数据.1.下面问题可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命C[A不能用普查的方式调查,因为这种试验具有破坏性;B用普查的方式无法完成;C可以用普查的方式进行调查;D该试验具有破坏性,且需要耗费大量的时间,在实际生产中无法实现.]2.下列要研究的数据一般通过试验获取的是()A.某品牌电视机的市场占有率B.某电视连续剧在全国的收视率C.某校七年级一班的男女同学的比例D.某型号炮弹的射程D[选项D中某型号炮弹的射程一般通过试验获取.]3.小明从网上查询得到某贫困地区10户居民家庭年收入(单位:万元)如下所示:编号12345678910年收入1.21.31.82.04.61.70.92.11.01.6根据以上数据,我们认为有一个数据是不准确的,需要剔除,这个数据是.4.6[由于编号为5的数据为4.6,明显高于其他数据,所以这个数据是不准确的.]【合作探究】获取数据途径的选择【例1】(1)下列哪些数据一般是通过试验获取的()A.1988年济南市的降雨量B.2019年新生儿人口数量C.某学校高一年级同学的数学测试成绩D.某种特效中成药的配方(2)“中国天眼”为500米口径球面射电望远镜(FivehundredmetersApertureSphericalTelescope,简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是()A.通过调查获取数据 B.通过试验获取数据C.通过观察获取数据 D.通过查询获得数据(1)D(2)C[(1)某种特效中成药的配方的数据只能通过试验获得.(2)“中国天眼”主要是通过观察获取数据.]选择获取数据的途径的依据选择获取数据的途径主要是根据所要研究问题的类型,以及获取数据的难易程度.有的数据可以有多种获取途径,有的数据只能通过一种途径获取,选择合适的方法和途径能够更好地提高数据的可靠性.1.要得到某乡镇的贫困人口数据,应采取的方法是()A.通过调查获取数据B.通过试验获取数据C.通过观察获取数据 D.通过查询获得数据A[某乡镇的贫困人口数据属于有限总体问题,所以可以通过调查获取数据.]获取数据途径的方法的设计【例2】为了缓解城市的交通拥堵情况,某市准备出台限制私家车的政策,为此要进行民意调查.某个调查小组调查了一些拥有私家车的市民,你认为这样的调查结果能很好地反映该市市民的意愿吗?[解](1)一个城市的交通状况的好坏将直接影响着生活在这个城市中的每个人,关系到每个人的利益.为了调查这个问题,在抽样时应当关注到各种人群,既要抽到拥有私家车的市民,也要抽到没有私家车的市民.(2)调查时,如果只对拥有私家车的市民进行调查,结果一定是片面的,不能代表所有市民的意愿.因此,在调查时,要对生活在该城市的所有市民进行随机地抽样调查,不要只关注到拥有私家车的市民.在统计活动中,尤其是大型的统计活动,为避免一些外界因素的干扰,通常需要确定调查的对象、调查的方法与策略,需要精心设计前期的准备工作和收集数据的方法,然后对数据进行分析,得出统计推断.2.一些期刊杂志社经常会请一些曾经高考落榜而在某方面的事业上取得成就的著名专家、学者,谈他们对高考落榜的看法,这些名人所讲的都是大同小异,不外乎“我也有过落榜的沮丧,但从长远看,它有益于我的人生”,“我是因祸得福,落榜使我走了另一条成功之路”等等.小明据此得出一条结论,上大学不如高考落榜,他的结论正确吗?[解]小明的结论是错误的,在众多的高考落榜生中,走出另外一条成功之路的是少数,小明通过研究一些期刊杂志社报道过的一些成功人士就得出结论是片面的,因为他的抽样不具有代表性.1.获取数据的途径一般有四种:调查,试验,观察和查询.2.在应用以上四种方式获取数据时,要清楚数据的类型,选择适当的获取方式.【课堂达标练习】1.判断正误(1)要了解一批节能灯的使用寿命,可以采用普查的方式.()(2)农科院获取小麦新品种的产量可以通过查询获取数据.()(3)普查获取的资料更加全面、系统,抽样调查更方便、快捷.()[提示](1)错误.因为试验具有破坏性,所以不能采取普查方式.(2)错误.农科院获取小麦新品种的产量应该通过试验获取数据.(3)正确.[答案](1)×(2)×(3)√2.下列调查方式中,可用“普查”方式的是()A.调查某品牌电视机的市场占有率B.调查某电视连续剧在全国的收视率C.调查某校七年级一班的男女同学的比例D.调查某型号炮弹的射程[答案]C3.粮食安全是每一个国家必须高度关注的问题,在现有条件下,降雨量对粮食生产的影响是非常巨大的,某次降雨之后该地气象台播报说本次降雨量是该地有气象记录以来最大的一次,气象台获取这些数据的途径是()A.通过调查获取数据 B.通过试验获取数据C.通过观察获取数据 D.通过查询获得数据C[该地的气象记录和本次的降雨量数据都是通过观察获取的.]4.为了了解我国电视机的销售情况,小张在某网站上下载了下图:(1)小张获取数据的途径是什么?(2)由图可知,电视机的销售总量在2012年达到最大值,你认为电视机销售总量出现下滑的主要原因是什么?[解](1)小张获取数据的途径是通过查询获得数据.(2)结合我国的经济发展水平可知,从2012年开始,电视机销售总量出现下滑的主要原因是市场的饱和.《9.2用样本估计总体》复习教案9.2.1总体取值规律的估计学习目标核心素养1.理解并掌握统计图表的画法及应用.(重点、易混点)2.结合实例,能用样本估计总体的取值规律.(重点、难点)1.通过对统计图表的学习,培养学生数学抽象素养.2.通过应用统计图表估计总体的取值规律,培养学生数据分析素养.【自主预习】1.画频率分布直方图的步骤(1)求极差:极差是一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5~12组,为了方便起见,一般取等长组距,并且组距应力求“取整”.(3)将数据分组.(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是1.(5)画频率分布直方图:横轴表示分组,纵轴表示eq\f(频率,组距).小长方形的面积=组距×eq\f(频率,组距)=频率.各小长方形的面积和等于1.2.其它统计图表统计图表主要应用扇形图直观描述各类数据占总数的比例条形图和直方图直观描述不同类别或分组数据的频数和频率折线图描述数据随时间的变化趋势思考1:为什么要对样本数据进行分组?[提示]不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.思考2:频数分布表与频率分布直方图有什么不同?[提示]频数分布表能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律.1.把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确的家庭达到()A.79%B.80%C.18%D.82%D[79%+1%+2%=82%.]2.如图所示是一容量为100的样本的频率分布直方图,则由图中的数据可知,样本落在[15,20]内的频数为()A.20 B.30C.40 D.50B[样本数据落在[15,20]内的频数为100×[1-5×(0.04+0.1)]=30.]3.某班计划开展一些课外活动,全班有40名学生报名参加,他们就乒乓球、足球、跳绳、羽毛球4项活动的参加人数做了统计,绘制了条形统计图(如图所示),那么参加羽毛球活动的人数的频率是.0.1[参加羽毛球活动的人数是4,则频率是eq\f(4,40)=0.1.]【合作探究】频率分布直方图的画法【例1】一个农技站为了考察某种大麦穗生长的分布情况,在一块试验田里抽取了100株麦穗,量得长度如下(单位:cm):6.56.46.75.85.95.95.24.05.44.65.85.56.06.55.16.55.35.95.55.86.25.45.05.06.86.05.05.76.05.56.86.06.35.55.06.35.26.07.06.46.45.85.95.76.86.66.06.45.77.46.05.46.56.06.85.86.36.06.35.65.36.45.76.76.25.66.06.76.76.05.66.26.15.36.26.86.64.75.75.75.85.37.06.06.05.95.46.05.26.06.35.76.86.14.55.66.36.05.86.3根据上面的数据列出频率分布表,绘制出频率分布直方图,并估计在这块试验田里长度在5.75~6.35cm之间的麦穗所占的百分比.[解](1)计算极差:7.4-4.0=3.4.(2)决定组距与组数:若取组距为0.3,因为eq\f(3.4,0.3)≈11.3,需分为12组,组数合适,所以取组距为0.3,组数为12.(3)决定分点:使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表:分组频数频率[3.95,4.25)10.01[4.25,4.55)10.01[4.55,4.85)20.02[4.85,5.15)50.05[5.15,5.45)110.11[5.45,5.75)150.15[5.75,6.05)280.28[6.05,6.35)130.13[6.35,6.65)110.11[6.65,6.95)100.10[6.95,7.25)20.02[7.25,7.55]10.01合计1001.00(5)绘制频率分布直方图如图.从表中看到,样本数据落在5.75~6.35之间的频率是0.28+0.13=0.41,于是可以估计,在这块试验田里长度在5.75~6.35cm之间的麦穗约占41%.绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“eq\f(频率,组距)”所占的比例来定高.如我们预先设定以“”为1个单位长度,代表“0.1”,则若一个组的eq\f(频率,组距)为0.2,则该小矩形的高就是“”(占两个单位长度),如此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个左右时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.1.如表所示给出了在某校500名12岁男孩中,用随机抽样得出的120人的身高(单位:cm).区间界限[122,126)[126,130)[130,134)[134,138)[138,142)人数58102233区间界限[142,146)[146,150)[150,154)[154,158]人数201165(1)列出样本频率分布表;(2)画出频率分布直方图;(3)估计身高小于134cm的人数占总人数的百分比.[解](1)样本频率分布表如下:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158]50.04合计1201.00(2)其频率分布直方图如下:(3)由样本频率分布表可知,身高小于134cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.频率分布直方图的应用【例2】为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?[解](1)频率分布直方图是以面积的形式反映了数据落在各小组内的频率大小的,因此第二小组的频率为eq\f(4,2+4+17+15+9+3)=0.08.又因为第二小组的频率=eq\f(第二小组的频数,样本容量),所以样本容量=eq\f(第二小组的频数,第二小组的频率)=eq\f(12,0.08)=150.(2)由频率分布直方图可估计该校高一年级学生的达标率为eq\f(17+15+9+3,2+4+17+15+9+3)×100%=88%.频率分布直方图的性质(1)因为小矩形的面积=组距×eq\f(频率,组距)=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)样本容量=频数/相应的频率.2.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140D[由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故每周自习时间不少于22.5小时的人数为0.7×200=140.故选D.]其它统计图表与频率分布直方图的综合应用[探究问题]1.统计图表对于数据分析能够起到什么作用?[提示](1)从数据中获取有用的信息;(2)直观、准确地理解相关的结果.2.条形图、扇形图、折线图、频率分布直方图这四种统计图中,哪些可以从图中看出原始数据?[提示]折线图.【例3】如图是根据某市3月1日至3月10日的最低气温(单位:℃)的情况绘制的折线统计图,试根据折线统计图反映的信息,绘制该市3月1日到10日最低气温(单位:℃)的扇形统计图.[解]该城市3月1日至10日的最低气温(单位:℃)情况如下表:日期12345678910最低气温(℃)-3-20-1120-122其中最低气温为-3℃的有1天,占10%,最低气温为-2℃的有1天,占10%,最低气温为-1℃的有2天,占20%,最低气温为0℃的有2天,占20%,最低气温为1℃的有1天,占10%,最低气温为2℃的有3天,占30%,扇形统计图如图所示.若本例中条件不变,绘制该市3月1日到3月10日最低气温(单位:℃)的条形统计图.[解]该城市3月1日到3月10日的最低气温(单位:℃)情况如下表:日期12345678910最低气温(℃)-3-20-1120-122其中最低气温为-3℃的有1天,最低气温为-2℃的有1天,最低气温为-1℃的有2天,最低气温为0℃的有2天,最低气温为1℃的有1天,最低气温为2℃的有3天.条形统计图如图所示.折线统计图的读图方法(1)读折线统计图时,首先要看清楚直角坐标系中横、纵坐标表示的意义;其次要明确图中的数量及其单位.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.1.样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大小来表示数据的分布规律,它可以让我们更清楚地看到整个样本数据的频率分布情况,并由此估计总体的分布情况.2.条形统计图及折线统计图特别适用于数据量很大的情况,但却损失了数据的部分信息.扇形统计图适合表示总体的各个部分所占比例的问题,但不适用于总体分成部分较多的问题.【课堂达标练习】1.判断正误(1)频率分布直方图中小长方形的高表示该组上的个体在样本中出现的频率与组距的比值.()(2)频率分布直方图中小矩形的面积表示该组的个体数.()(3)扇形统计图表示的是比例,条形统计图不表示比例.()[提示](1)正确.(2)错误.频率分布直方图中小矩形的面积表示该组的频率.(3)错误.条形图也可以表示.[答案](1)√(2)×(3)×2.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n的样本,其频率分布直方图如图所示,其中支出(单位:元)在[50,60]内的学生有30人,则n的值为()A.100 B.1000C.90 D.900A[由题意可知,前三组的频率之和为(0.01+0.024+0.036)×10=0.7,∴支出在[50,60]内的频率为1-0.7=0.3,∴n=eq\f(30,0.3)=100.]3.甲、乙两个城市2018年4月中旬每天的最高气温统计图如图所示,则这9天里,气温比较稳定的是城市.(填“甲”或“乙”)甲[这9天里,乙城市的最高气温约为35℃,最低气温约为20℃;甲城市的最高气温约为25℃,最低气温约为21℃.故甲城市气温较稳定.]9.2.2总体百分位数的估计学习目标核心素养1.结合实例,能用样本估计百分位数.(重点)2.理解百分位数的统计含义.(重点、难点)1.通过对百分位数概念的学习,培养学生数学抽象素养.2.通过计算样本的百分位数,培养学生数学运算素养.【自主预习】1.第p百分位数的定义一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数25%,50%,75%这三个分位数把一组数据由小到大排列后的数据分成四等份,因此称为四分位数.思考:(1)班级人数为50的班主任老师说“90%的同学能够考取本科院校”,这里的“90%”是百分位数吗?(2)“这次数学测试成绩的第70百分位数是85分”这句话是什么意思?[提示](1)不是.是指能够考取本科院校的同学占同学总数的百分比.(2)有70%的同学数学测试成绩在小于或等于85分.1.下列关于一组数据的第50分位数的说法正确的是()A.第50分位数就是中位数B.总体数据中的任意一个数小于它的可能性一定是50%C.它一定是这组数据中的一个数据D.它适用于总体是离散型的数据A[由百分位数的意义可知选项B,C,D错误.]2.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是.8.4[因为8×30%=2.4,故30%分位数是第三项数据8.4.]3.一组样本数据的频率分布直方图如图所示,试估计此样本数据的第50百分位数为.eq\f(100,9)[样本数据低于10的比例为0.08+0.32=0.40,样本数据低于14的比例为0.40+0.36=0.76,所以此样本数据的第50百分位数在[10,14]内,估计此样本数据的第50百分位数为10+eq\f(0.1,0.36)×4=eq\f(100,9).]【合作探究】百分位数的计算【例1】从某珍珠公司生产的产品中,任意抽取12颗珍珠,得到它们的质量(单位:g)如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.(1)分别求出这组数据的第25,75,95百分位数.(2)请你找出珍珠质量较小的前15%的珍珠质量.(3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.[解](1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有12个数据,所以12×25%=3,12×75%=9,12×95%=11.4,则第25百分位数是eq\f(8.0+8.3,2)=8.15,第75百分位数是eq\f(8.6+8.9,2)=8.75,第95百分位数是第12个数据为9.9.(2)因为共有12个数据,所以12×15%=1.8,则第15百分位数是第2个数据为7.9.即产品质量较小的前15%的产品有2个,它们的质量分别为7.8,7.9.(3)由(1)可知样本数据的第25百分位数是8.15g,第50百分位数为8.5g,第95百分位数是9.9,所以质量小于或等于8.15g的珍珠为次品,质量大于8.15g且小于或等于8.5g的珍珠为合格品,质量大于8.5g且小于等于9.9的珍珠为优等品,质量大于9.9g的珍珠为特优品.计算一组n个数据的第p百分位数的一般步骤(1)排列:按照从小到大排列原始数据;(2)计算i:计算i=n×p%;(3)定数:若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.以下数据为参加数学竞赛决赛的15人的成绩:78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位是()A.90B.90.5C.91D.91.5B[把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位是eq\f(90+91,2)=90.5.]百分位数的综合应用[探究问题]1.第p百分位数有什么特点?[提示]总体数据中的任意一个数小于或等于它的可能性是p.2.某组数据的第p百分位数在此组数据中一定存在吗?为什么?[提示]不一定.因为按照计算第p百分位数的步骤,第2步计算所得的i=n×p%如果是整数,则第p百分位数为第i项与第(i+1)项数据的平均数,若第i项与第(i+1)项数据不相等,则第p百分位数在此组数据中就不存在.【例2】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75%分位数.[解](1)当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x-200)=0.8x-60;当x>400时,y=0.5×200+0.8×200+1.0×(x-400)=x-140.所以y与x之间的函数解析式为y=eq\b\lc\{\rc\(\a\vs4\al\co1(0.5x,0≤x≤200,,0.8x-60,200<x≤400,,x-140,x>400.))(2)由(1)可知,当y=260时,x=400,即用电量不超过400千瓦时的占80%,结合频率分布直方图可知eq\b\lc\{\rc\(\a\vs4\al\co1(0.001×100+2×100b+0.003×100=0.8,100a+0.0005×100=0.2))解得a=0.0015,b=0.0020.(3)设75%分位数为m,因为用电量低于300千瓦时的所占比例为(0.001+0.002+0.003)×100=60%,用电量不超过400千瓦时的占80%,所以75%分位数为m在[300,400)内,所以0.6+(m-300)×0.002=0.75,解得m=375千瓦时,即用电量的75%分位数为375千瓦时.根据例2的(2)题中求得的数据计算用电量的15%分位数.[解]设15%分位数为x,因为用电量低于100千瓦时的所占比例为0.001×100=10%,用电量不超过200千瓦时的占30%,所以15%分位数为x在[100,200)内,所以0.1+(x-100)×0.002=0.15,解得x=125千瓦时,即用电量的15%分位数为125千瓦时.根据频率分布直方图计算样本数据的百分位数,首先要理解频率分布直方图中各组数据频率的计算,其次估计百分位数在哪一组,再应用方程的思想方法,设出百分位数,解方程可得.求一组数据的百分位数时,掌握其步骤:①按照从小到大排列原始数据;②计算i=n×p%;③若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为i项与第(i+1)项数据的平均数.【课堂达标练习】1.判断正误(1)若一组样本数据各不相等,则其第75%分位数大于第25%分位数.()(2)若一组样本数据的第10%分位数是23,则在这组数据中有10%的数据大于23.()(3)若一组样本数据的第24%分位数是24,则在这组数据中至少有76%的数据大于或等于24.()[提示](1)正确.(2)错误.若一组样本数据的第10%分位数是23,则在这组数据中有10%的数据小于或等于23.(3)正确.[答案](1)√(2)×(3)√2.下列一组数据的第25百分位数是()2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6A.3.2B.3.0C.4.4D.2.5A[把这组数据按照由小到大排列,可得:2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,由i=10×25%=2.5,不是整数,则第3个数据3.2,是第25百分位数.]3.已知100个数据的第75百分位数是9.3,则下列说法正确的是()A.这100个数据中一定有75个数小于或等于9.3B.把这100个数据从小到大排列后,9.3是第75个数据C.把这100个数据从小到大排列后,9.3是第75个数据和第76个数据的平均数D.把这100个数据从小到大排列后,9.3是第75个数据和第74个数据的平均数C[因为100×75%=75为整数,所以第75个数据和第76个数据的平均数为第75百分位数,是9.3,选C.]9.2.3总体集中趋势的估计学习目标核心素养1.结合实例,能用样本估计总体的集中趋势参数.(平均数、中位数、众数).(重点、难点)2.理解集中趋势参数的统计含义.(重点、难点)1.通过对函数平均数、中位数、众数概念的学习,培养学生数学抽象素养.2.通过利用平均数、中位数、众数估计总体的集中趋势,培养学生直观想象素养.【自主预习】1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果个数是偶数,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数和平均数的比较名称优点缺点平均数与中位数相比,平均数反映出样本数据中更多的信息,对样本中的极端值更加敏感任何一个数据的改变都会引起平均数的改变.数据越“离群”,对平均数的影响越大中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响对极端值不敏感众数体现了样本数据的最大集中点众数只能传递数据中的信息的很少一部分,对极端值不敏感3.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.思考1:中位数一定是样本数据中的一个数吗?[提示]不一定.一组数据按大小顺序排列后,如果有奇数个数据,处于中间位置的数是中位数;如果有偶数个数据,则取中间两个数据的平均数是中位数.思考2:一组数据的众数可以有几个?中位数是否也具有相同的结论?[提示]一组数据的众数可能有一个,也可能有多个,中位数只有唯一一个.1.一组样本数据为:19,23,12,14,14,17,10,12,18,14,27,则这组数据的众数和中位数分别为()A.14,14 B.12,14C.14,15.5 D.12,15.5A[把这组数据按从小到大排列为:10,12,12,14,14,14,17,18,19,23,27,则可知其众数为14,中位数为14.]2.某校从高一年级参加期末考试的学生中抽出60名,其成绩(均为整数)的频率分布直方图如图所示,由此估计此次考试成绩的中位数、众数分别是()A.73.3,75 B.73.3,80C.70,70 D.70,75A[由题图可知小于70分的有24人,大于80分的有18人,则在[70,80)之间的有18人,所以中位数落在[70,80)这组内,且为70+eq\f(10,3)≈73.3;众数就是频率分布直方图中最高的矩形底边中点的横坐标,即eq\f(70+80,2)=75.]3.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.6[eq\f(4+6+5+8+7+6,6)=6.]【合作探究】平均数、中位数和众数的计算【例1】已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A.a>b>c B.a>c>bC.c>a>b D.c>b>aD[由题意得a=eq\f(1,10)(16+18+15+11+16+18+18+17+15+13)=eq\f(157,10)=15.7,中位数为16,众数为18,则b=16,c=18,∴c>b>a.](1)求样本数据的中位数和众数时,把数据按照从小到大的顺序排列后,按照其求法进行.(2)求样本数据的平均数的难点在于计算的准确性.1.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均数、众数、中位数分别是()A.85分、85分、85分 B.87分、85分、86分C.87分、85分、85分 D.87分、85分、90分C[由题意知,该学习小组共有10人,因此众数和中位数都是85,平均数为eq\f(100+95+2×90+4×85+80+75,10)=87.]平均数、中位数和众数的实际应用【例2】下面是某快餐店所有工作人员一周的收入表:老板大厨二厨采购员杂工服务生会计3000元450元350元400元320元320元410元(1)计算所有人员的周平均收入;(2)这个平均收入能反映打工人员的周收入的一般水平吗?为什么?(3)去掉老板的收入后,再计算平均收入,这能代表打工人员的周收入的水平吗?[解](1)周平均收入eq\x\to(x)1=eq\f(1,7)(3000+450+350+400+320+320+410)=750(元).(2)这个平均收入不能反映打工人员的周收入水平,可以看出打工人员的收入都低于平均收入,因为老板收入特别高,这是一个异常值,对平均收入产生了较大的影响,并且他不是打工人员.(3)去掉老板的收入后的周平均收入eq\x\to(x)2=eq\f(1,6)(450+350+400+320+320+410)=375(元).这能代表打工人员的周收入水平.利用样本数字特征进行决策时的两个关注点(1)平均数与每一个数据都有关,可以反映更多的总体信息,但受极端值的影响大;中位数是样本数据所占频率的等分线,不受几个极端值的影响;众数只能体现数据的最大集中点,无法客观反映总体特征.(2)当平均数大于中位数时,说明数据中存在许多较大的极端值.2.某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?[解](1)甲群市民年龄的平均数为eq\f(13+13+14+15+15+15+15+16+17+17,10)=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为eq\f(54+3+4+4+5+5+6+6+6+57,10)=15(岁),中位数为5.5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.根据频率分布直方图求平均数、中位数和众数[探究问题]1.频率分布直方图中每个小矩形的面积代表什么?[提示]频率分布直方图中每个小矩形的面积是样本数据落在这一组的频率.2.在频率分布直方图中,如何确定众数和中位数?[提示]在频率分布直方图中,众数是最高小矩形底边的中点所对应的数据;中位数左边和右边的直方图的面积应该相等.【例3】某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数;(2)求这次测试数学成绩的中位数.[思路探究](1)最高的小长方形的底边中点的横坐标即为样本数据的众数;(2)判断中位数所在的区间,设出中位数,根据中位数的左右两边的频率相等列出方程求解.[解](1)由题干图知众数为eq\f(70+80,2)=75.(2)由题干图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.1.若例3的条件不变,求数学成绩的平均分.[解]由题干图知这次数学成绩的平均数为:eq\f(40+50,2)×0.005×10+eq\f(50+60,2)×0.015×10+eq\f(60+70,2)×0.02×10+eq\f(70+80,2)×0.03×10+eq\f(80+90,2)×0.025×10+eq\f(90+100,2)×0.005×10=72.2.若例3条件不变,求80分以下的学生人数.[解][40,80)分的频率为:(0.005+0.015+0.020+0.030)×10=0.7,所以80分以下的学生人数为80×0.7=56.众数、中位数、平均数与频率分布直方图的联系(1)众数:众数在样本数据的频率分布直方图中,就是最高矩形的底边中点的横坐标.(2)中位数:在样本中,有50%的个体大于或等于中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可估计中位数的值.(3)平均数:用频率分布直方图估计平均数时,平均数等于频率分布直方图中每个小矩形的面积乘以每个小矩形底边中点的横坐标之和.1.一组数据中的众数可能不止一个,中位数是唯一的,求中位数时,必须先排序.2.利用直方图求数字特征:(1)众数是最高的矩形的底边的中点.(2)中位数左右两边直方图的面积应相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.【课堂达标练习】1.判断正误(1)一个样本的众数、平均数和中位数都是唯一的.()(2)样本的平均数是频率分布直方图中最高长方形的中点对应的数据.()(3)若改变一组数据中其中的一个数,则这组数据的平均数、中位数、众数都会发生改变.()[提示](1)错误.一个样本的平均数和中位数是唯一的.若数据中有两个或两个以上出现得最多,且出现次数一样多,则这些数据都是众数,若一组数据中每个数据出现的次数一样多,则没有众数,可见一个样本的众数可能多个,也可能没有.(2)错误.样本的平均数等于每个小矩形的面积乘小矩形底边中点的横坐标之和.(3)错误.若改变一组数据中的一个数,则这组数据的平均数一定会改变,而中位数与众数可能不变.[答案](1)×(2)×(3)×2.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为()A.4.55B.4.5C.12.5D.1.64A[由条件得eq\o(x,\s\up6(-))=eq\f(1,11)(4×3+3×2+5×4+6×2)≈4.55.]3.下列数字特征一定会在原始数据中出现的是()A.众数 B.中位数C.平均数 D.都不会A[众数是在一组数据中出现次数最多的数,所以一定会在原始数据中出现.]4.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.求:(1)高一参赛学生成绩的众数、中位数;(2)高一参赛学生的平均成绩.[解](1)用频率分布直方图中最高矩形所在的区间的中点值作为众数的近似值,得众数为65,又∵第一个小矩形的面积为0.3,设第二个小矩形底边的一部分长为x,则x×0.04=0.2,得x=5,∴中位数为60+5=65.(2)依题意,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,所以平均成绩约为67分.9.2.4总体离散程度的估计学习目标核心素养1.结合实例,能用样本估计总体的离散程度参数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 奢侈品销售工作总结
- 仪器仪表销售工作总结
- 亲子行业营销实践总结
- 绿色校园与环保教育计划
- 广西玉林地区2022-2023学年六年级上学期英语期末试卷
- 股东会议召集书三篇
- 《灾后心理援助》课件
- 《糖尿病治疗昌玉兰》课件
- 2024年安徽省芜湖市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年安徽省淮南市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2025年包钢集团公司招聘笔试参考题库含答案解析
- 猫抓病的护理
- 勘察设计工作内容
- GB/T 19799.2-2024无损检测超声检测试块第2部分:2号标准试块
- 2024-2025学年冀教新版八年级上册数学期末复习试卷(含详解)
- 内蒙古呼和浩特市2024届九年级上学期期末考试数学试卷(含答案)
- DB45T 1831-2018 汽车加油加气站防雷装置检测技术规范
- 《儿歌运用于幼儿园教育问题研究的文献综述》8600字
- 悬挂灯笼施工方案
- 水资源调配与优化-洞察分析
- 某自来水公司自然灾害应急预案样本(2篇)
评论
0/150
提交评论