高中数学教案(4篇)_第1页
高中数学教案(4篇)_第2页
高中数学教案(4篇)_第3页
高中数学教案(4篇)_第4页
高中数学教案(4篇)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学教案(4篇)高中数学优秀教案篇一教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。教学重点:通过实例理解分层抽样的方法。教学难点:分层抽样的步骤。教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。即40,32,28。三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。2、三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3、分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。(2)确定比例:计算各层的个体数与总体的个体数的比。(3)确定各层应抽取的样本容量。(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。四、数学运用1、例题。例1(1)分层抽样中,在每一层进行抽样可用_________________。(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;③某班元旦聚会,要产生两名“幸运者”。对这三件事,合适的抽样方法为A、分层抽样,分层抽样,简单随机抽样B、系统抽样,系统抽样,简单随机抽样C、分层抽样,简单随机抽样,简单随机抽样D、系统抽样,分层抽样,简单随机抽样例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:很喜爱喜爱一般不喜爱电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?解:抽取人数与总的比是60∶12000=1∶200,则各层抽取的人数依次是12.175,22.835,19.63,5.36,取近似值得各层人数分别是12,23,20,5。然后在各层用简单随机抽样方法抽取。答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5。说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。分析:(1)总体容量较小,用抽签法或随机数表法都很方便。(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。五、要点归纳与方法小结本节课学习了以下内容:1、分层抽样的概念与特征;2、三种抽样方法相互之间的区别与联系。高中数学优秀教案篇二教学目标:1、理解并掌握曲线在某一点处的切线的概念;2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化问题的能力及数形结合思想。教学重点:理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。教学难点:用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。教学过程:一、问题情境1、问题情境。如何精确地刻画曲线上某一点处的变化趋势呢?如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。2、探究活动。如图所示,直线l1,l2为经过曲线上一点P的两条直线,(1)试判断哪一条直线在点P附近更加逼近曲线;(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?二、建构数学切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?三、数学运用例1试求在点(2,4)处的切线斜率。解法一分析:设P(2,4),Q(xQ,f(xQ)),则割线PQ的斜率为:当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。从而曲线f(x)=x2在点(2,4)处的切线斜率为4。解法二设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。练习试求在x=1处的切线斜率。解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。小结求曲线上一点处的切线斜率的一般步骤:(1)找到定点P的坐标,设出动点Q的坐标;(2)求出割线PQ的斜率;(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。思考如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?解设所以,当无限趋近于0时,无限趋近于点处的切线的斜率。变式训练1。已知,求曲线在处的切线斜率和切线方程;2。已知,求曲线在处的切线斜率和切线方程;3。已知,求曲线在处的切线斜率和切线方程。课堂练习已知,求曲线在处的切线斜率和切线方程。四、回顾小结1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。2、根据定义,利用割线逼近切线的方法,可以求出曲线在一点处的切线斜率和方程。五、课外作业高中数学教案模板篇三教学目标:1.结合实际问题情景,理解分层抽样的必要性和重要性;2.学会用分层抽样的方法从总体中抽取样本;3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。教学重点:通过实例理解分层抽样的方法。教学难点:分层抽样的步骤。教学过程:一、问题情境1.复习简单随机抽样、系统抽样的概念、特征以及适用范围。2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是,,,即40,32,28.三、建构数学1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。2.三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3.分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。(2)确定比例:计算各层的个体数与总体的个体数的比。(3)确定各层应抽取的样本容量。(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。四、数学运用1.例题。例1(1)分层抽样中,在每一层进行抽样可用_________________.(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;③某班元旦聚会,要产生两名“幸运者”。对这三件事,合适的抽样方法为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:很喜爱喜爱一般不喜爱2435456739261072电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?解:抽取人数与总的比是60∶12000=1∶200,则各层抽取的人数依次是12.175,22.835,19.63,5.36,取近似值得各层人数分别是12,23,20,5.然后在各层用简单随机抽样方法抽取。答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5.说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。分析:(1)总体容量较小,用抽签法或随机数表法都很方便。(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。五、要点归纳与方法小结本节课学习了以下内容:1.分层抽样的概念与特征;2.三种抽样方法相互之间的区别与联系。高中数学教案模板篇四教学目标(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。教学建议一、知识结构二、重点难点分析本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。三、教法建议①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:ab,ac,ba,bc,ca,cb,其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。在定义中“一定顺序”就是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论