2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题含解析_第1页
2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题含解析_第2页
2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题含解析_第3页
2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题含解析_第4页
2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省石家庄市辛集市辛集中学高一数学第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.2.已知球的直径SC=4,A,B是该球球面上的两点,AB=1.∠ASC=∠BSC=45°则棱锥S—ABC的体积为()A. B. C. D.3.若直线l:ax+by=1(a>0,b>0)平分圆x2+y2﹣x﹣2y=0,则的最小值为()A. B.2 C. D.4.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件5.如果成等差数列,成等比数列,那么等于()A. B. C. D.6.已知向量=(),=(-1,1),若,则的值为()A. B. C. D.7.在中,,,,则的面积是()A. B. C.或 D.或8.下列说法正确的是()A.若,则 B.若,,则C.若,则 D.若,,则9.已知向量,且,则m=()A.−8 B.−6C.6 D.810.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,点P是上底面(含边界)内一动点,则三棱锥的主视图与俯视图的面积之比的最小值为______.12.已知,若数列满足,,则等于________13.已知无穷等比数列的首项为,公比为,则其各项的和为__________.14.设为虚数单位,复数的模为______.15.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.16.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为零的等差数列满足:,且成等比数列.(1)求数列的通项公式.(2)记为数列的前项和,是否存在正整数,使得?若存在,请求出的最小值;若不存在,请说明理由.18.在中,内角,,的对边分别为,,,已知.(Ⅰ)求角的值;(Ⅱ)若,且的面积为,求的值.19.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值时的值.20.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.21.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.2、C【解析】如图所示,由题意知,在棱锥SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥SABD和CABD的体积和,所以棱锥SABC的体积V=SC·S△ADB=×4×=.3、C【解析】

求得圆心,代入直线的方程,然后利用基本不等式求得的最小值.【详解】圆的圆心为,由于直线平分圆,故圆心在直线上,即,所以,当且仅当时等号成立.故选:C【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值.4、A【解析】

事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.5、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D6、D【解析】

对条件两边平方,得到该两个向量分别垂直,代入点的坐标,计算参数,即可.【详解】结合条件可知,,得到,代入坐标,得到,解得,故选D.【点睛】本道题考查了向量的运算,考查了向量垂直坐标表示,难度中等.7、C【解析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.8、D【解析】

利用不等式的性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A选项,若且,则,该选项错误;对于B选项,取,,,,则,均满足,但,B选项错误;对于C选项,取,,则满足,但,C选项错误;对于D选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.9、D【解析】

由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.10、C【解析】

由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设正方体的棱长为,求出三棱锥的主视图面积为定值,当与重合时,三棱锥的俯视图面积最大,此时主视图与俯视图面积比值最小.【详解】设正方体的棱长为,则三棱锥的主视图是底面边为,高为的三角形,其面积为,当与重合时,三棱锥的俯视图为正方形,其面积最大,最大值为,所以,三棱锥的主视图与俯视图面积比的最小值为.故答案为:.【点睛】本题考查了空间几何体的三视图面积计算应用问题,属于基础题.12、【解析】

根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.13、【解析】

根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.14、5【解析】

利用复数代数形式的乘法运算化简,然后代入复数模的公式,即可求得答案.【详解】由题意,复数,则复数的模为.故答案为5【点睛】本题主要考查了复数的乘法运算,以及复数模的计算,其中熟记复数的运算法则,和复数模的公式是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】

设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.16、【解析】

根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,最小值是.【解析】

(1)利用等比中项的性质列方程,将已知条件转化为的形式列方程组,解方程组求得,由此求得数列的通项公式.(2)首先求得数列的前项和,由列不等式,解一元二次不等式求得的取值范围,由此求得的最小值.【详解】(1)设等差数列的公差为(),由题意得化简,得.因为,所以,解得所以,即数列的通项公式是().(2)由(1)可得.假设存在正整数,使得,即,即,解得或(舍).所以所求的最小值是.【点睛】本小题主要考查等比中项的性质,考查等差数列通项公式的基本量计算,考查等差数列前项和公式,考查一元二次不等式的解法,属于中档题.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用,化简得,然后利用正弦定理和余弦定理求解即可.(Ⅱ)利用面积公式得,得到,再利用,即可求解.【详解】(Ⅰ)由题意知,即,由正弦定理,得,①,由余弦定理,得,又因为,所以.(Ⅱ)因为,,由面积公式得,即.由①得,故,即.【点睛】本题考查正弦和余弦定理的应用,属于基础题.19、(1),最大值为.(2)时,最小值0.时,最大值.【解析】

(1)利用数量积公式、倍角公式和辅助角公式,化简,再利用三角函数的有界性,即可得答案;(2)利用整体法求出,再利用三角函数线,即可得答案.【详解】(1)∴,的最大值为.(2)由(1)得,∵,.,当时,即时,取最小值0.当,即时,取最大值.【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】

(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.21、(1)(2)【解析】

(1)首先求出包含的基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论