版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海杨浦高级中学高一下数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直角坐标系中,直线的倾斜角是A. B. C. D.2.下列结论正确的是().A.若ac<bc,则a<b B.若a2<C.若a>b,c<0,则ac<bc D.若a<b3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”4.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是()A.甲队平均得分高于乙队的平均得分中乙B.甲队得分的中位数大于乙队得分的中位数C.甲队得分的方差大于乙队得分的方差D.甲乙两队得分的极差相等5.有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是()A.1000 B.1010 C.1015 D.10306.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=7.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.8.一个几何体的三视图如图所示,则几何体的体积是()A. B. C. D.19.直线被圆截得的弦长为()A.4 B. C. D.10.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和12二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列中,,当时,,数列的前项和为_____.12.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.13.已知向量,,则的最大值为_______.14.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.15.若,其中是第二象限角,则____.16.已知函数的定义域为,则实数的取值范围为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.18.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.19.如图扇形的圆心角,半径为2,E为弧AB的中点C、D为弧AB上的动点,且,记,四边形ABCD的面积为.(1)求函数的表达式及定义域;(2)求的最大值及此时的值20.(1)已知,求的值(2)若,,且,,求的值21.已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1).(1)求f(x)的解析式;(2)若关于x的方程f(1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先根据直线的方程,求出它的斜率,可得它的倾斜角.【详解】在直角坐标系中,直线的斜率为,等于倾斜角的正切值,故直线的倾斜角是,故选.【点睛】本题主要考查直线的倾斜角和斜率的求法.2、C【解析】分析:根据不等式性质逐一分析即可.详解:A.若ac<bc,则a<b,因为不知道c的符号,故错误;B.若a2<可令a=-1,b=-2,则结论错误;D.若a<b,则点睛:考查不等式的基本性质,做此类题型最好的方法就是举例子注意排除即可.属于基础题.3、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.4、C【解析】
由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.【详解】29;30,∴∴A错误;甲的中位数是29,乙的中位数是30,29<30,∴B错误;甲的极差为31﹣26=5,乙的极差为32﹣28=4,5∴D错误;排除可得C选项正确,故选C.【点睛】本题考查了由茎叶图求数据的平均数,极差,中位数,运用了选择题的做法即排除法的解题技巧,属于基础题.5、B【解析】
把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展开,将a1+a2+a3+…+a2015=425,代入化简得:=1005,由于数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出.【详解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展开可得:+2(a1+a2+…+a2015)+2015=3870,把a1+a2+a3+…+a2015=425,代入化简可得:=1005,∵数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,∴有穷数列a1,a2,a3,…,a2015中值为0的项数等于2015﹣1005=1.故选B.【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.6、D【解析】
由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.7、B【解析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.8、C【解析】
由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,代入体积公式计算可得答案.【详解】解:由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,∴三棱柱的体积V.故选:C.【点睛】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.9、B【解析】
先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.10、C【解析】
利用等差数列性质得到a11=0,再判断S10【详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【点睛】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
首先利用数列的关系式的变换求出数列为等差数列,进一步求出数列的通项公式,最后求出数列的和.【详解】解:数列中,,当时,,整理得,即,∴数列是以为首项,6为公差的等差数列,故,所以,故答案为:.【点睛】本题主要考查定义法判断等差数列,考查等差数列的前项和,考查运算能力和推理能力,属于中档题.12、【解析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.13、.【解析】
计算出,利用辅助角公式进行化简,并求出的最大值,可得出的最大值.【详解】,,,所以,,当且仅当,即当,等号成立,因此,的最大值为,故答案为.【点睛】本题考查平面向量模的最值的计算,涉及平面向量数量积的坐标运算以及三角恒等变换思想的应用,考查分析问题和解决问题的能力,属于中等题.14、【解析】
考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.15、【解析】
首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.16、【解析】
根据对数的真数对于0,再结合不等式即可解决.【详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【点睛】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)40+24【解析】
由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.【详解】解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.(1)几何体的体积为V•S矩形•h6×8×4=1.(2)正侧面及相对侧面底边上的高为:h12.左、右侧面的底边上的高为:h24.故几何体的侧面面积为:S=2×(8×26×4)=40+24.18、(1),(2)或【解析】
(1)首先根据题意列出等式,再化简即可得到轨迹方程.(2)首先根据题意设出切线方程,再利用圆心到切线的距离等于半径即可求出切线方程.【详解】(1)设,有题知,,所以点的轨迹的方程:.(2)当切线斜率不存在时,切线为圆心到的距离,舍去.当切线斜率存在时,设切线方程为.圆心到切线的距离,解得:或.即切线方程为:或.【点睛】本题第一问考查了圆的轨迹方程,第二问考查了直线与圆的位置关系中的切线问题,属于中档题.19、(1)(2)当时,取最大值.【解析】
(1)取OE与DC、AB的交点分别为M、N,在中,分别求出,,再利用梯形的面积公式求解即可;(2)令,则,,再求最值即可.【详解】解:(1),OE与DC、AB的交点分别为M、N,由已知可知,在中,.,,梯形ABCD的高,则.(2)设,则,,则,,则.,当时,,此时,即,,,,故.故的最大值为,此时.【点睛】本题考查了三角函数的应用,重点考查了运算能力,属中档题20、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公式及转化思想,还考查了两角差的正弦公式及同角三角函数基本关系,考查计算能力,属于中档题.21、(1)f(x)=1x﹣1﹣x(2)(﹣∞,2]∪{4}(1)存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立,且n的值为1,2,1【解析】
(1)利用奇函数的性质及f(1)列出方程组,解方程组即可得到函数解析式;
(2)结合函数单调性和函数的奇偶性脱去符号,转化为二次函数的零点分布求解;
(1)分离得,由,得到的范围,由此得出结论.的范围【详解】(1)由题意,,解得,∴f(x)=1x﹣1﹣x;(2)由指数函数的性质可知,函数f(x)=1x﹣1﹣x为R上的增函数,故方程f(91)+f(1﹣1mx﹣2)=0即为,即故g(x)=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度天津市公共营养师之二级营养师考前练习题及答案
- 2024年度四川省公共营养师之四级营养师自我检测试卷B卷附答案
- 2024年度四川省公共营养师之三级营养师模拟预测参考题库及答案
- 2025年胶袋项目可行性研究报告
- 2023-2028年中国律师事务所行业市场全景评估及投资前景展望报告
- 新沂市城西加油站项目可行性研究报告
- 2025深圳市劳动合同(空白)
- 中国光电烟雾报警器行业市场前瞻与投资战略规划分析报告
- 2024-2030年中国民办高校行业发展运行现状及投资潜力预测报告
- 2023-2028年中国外卖行业发展监测及市场发展潜力预测报告
- 《鸿蒙智能互联设备开发(微课版)》全套教学课件
- 山西省晋中市2023-2024学年高一上学期期末考试 物理 含解析
- 装卸工安全培训课件
- 中成药学完整版本
- 安全与急救学习通超星期末考试答案章节答案2024年
- 2024-2025学年度广东省春季高考英语模拟试卷(解析版) - 副本
- 2024电力安全工器具及小型施工机具预防性试验规程
- 基于单片机的2.4G无线通信系统
- 《建筑力学》期末机考资料
- 广东省广州市2023-2024学年三年级上学期英语期中试卷(含答案)
- DB11T 1282-2022 数据中心节能设计规范
评论
0/150
提交评论