2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题含解析_第1页
2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题含解析_第2页
2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题含解析_第3页
2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题含解析_第4页
2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省安庆市怀宁二中高一数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.1232.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同3.已知平面平面,直线平面,直线平面,,在下列说法中,①若,则;②若,则;③若,则.正确结论的序号为()A.①②③ B.①② C.①③ D.②③4.已知空间中两点,则长为()A. B. C. D.5.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.6.已知圆(为圆心,且在第一象限)经过,,且为直角三角形,则圆的方程为()A. B.C. D.7.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.8.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则9.若函数则()A. B. C. D.10.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A., B., C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,若,则的所有可能值的和为______;12.已知直线:与直线:互相平行,则直线与之间的距离为______.13.已知向量a=(3,2),b=(0,-1),那么向量3b-a的坐标是.14.____________.15.已知函数(,)的部分图像如图所示,则函数解析式为_______.16.________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?18.某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.20.如图,在多面体中,为等边三角形,,点为边的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求直线与平面所成角的正弦值.21.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.2、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.3、D【解析】

由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,①若,可得,可能平行,故①错误;②若,由面面垂直的性质定理可得,故②正确;③若,可得,故③正确.故选:D.【点睛】本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.4、C【解析】

根据空间中的距离公式,准确计算,即可求解,得到答案.【详解】由空间中的距离公式,可得,故选C.【点睛】本题主要考查了空间中的距离公式,其中解答中熟记空间中的距离公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】

逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.6、D【解析】

设且,半径为,根据题意列出方程组,求得的值,即可求解.【详解】依题意,圆经过点,可设且,半径为,则,解得,所以圆的方程为.【点睛】本题主要考查了圆的标准方程的求解,其中解答中熟记圆的标准方程的形式,以及合理应用圆的性质是解答的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.8、B【解析】

根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.9、B【解析】

首先根据题意得到,再计算即可.【详解】……,.故选:B【点睛】本题主要考查分段函数值的求法,同时考查了指数幂的运算,属于简单题.10、B【解析】

试题分析:由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、36【解析】

根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.12、10【解析】

利用两直线平行,先求出,再由两平行线的距离公式求解即可【详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【点睛】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.13、【解析】试题分析:因为,所以.考点:向量坐标运算.14、【解析】

在分式的分子和分母中同时除以,然后利用常见数列的极限可计算出所求极限值.【详解】由题意得.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列的极限是解题的关键,考查计算能力,属于基础题.15、y=sin(2x+).【解析】

由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值答案可求【详解】根据函数y=sin(ωx+φ)(ω>0,0<φ)的部分图象,可得A=1,•,∴ω=2,再结合五点法作图可得2•φ=π,∴φ,则函数解析式为y=sin(2x+)故答案为:y=sin(2x+).【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值难度中档.16、【解析】

直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)小时【解析】

(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.18、(1)0.48(2)()【解析】

(1)计算日用水量小于0.35时,频率分布直方图中长方形面积之和即可;(2)根据频率分布直方图计算出使用电子节水阀后日均节水量的平均值,再求出年节水量即可.【详解】(1)根据直方图,该家庭使用电子节水阀后20天日用水量小于0.35的频率为,因此该家庭使用电子节水阀后日用水量小于0.35的概率的估计值为0.48.(2)该家庭使用了电子节水阀后20天日用水量的平均数为.估计使用电子节水阀后,一年可节省水().【点睛】本题考查对频率分布直方图的理解,以及由频率分布直方图计算平均数,属基础题.19、(1)(2)【解析】

(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ).【解析】

(I)取中点,连结,利用三角形中位线定理可证明是平行四边形,可得,由线面平行的判定定理可得结果;(Ⅱ)先证明,,可得平面,从而可得平面,由面面垂直的判定定理可得结果;(Ⅲ)取中点,连结,直线与平面所成角等于直线与平面所成角,过作,垂足为,连接,为直线与平面所成角,利用直角三角形的性质可得结果.【详解】(I)取中点,连结,是平行四边形,平面,平面,平面.(II),又平面平面,又为等边三角形,为边的中点,平面由(I)可知,平面,平面平面平面.(III)取中点,连结,所以直线与平面所成角即为直线与平面所成角,过作,垂足为,连接.平面平面,平面,平面.为斜线在面内的射影,为直线与平面所成角,在中,直线与平面所成角的正弦值为.【点睛】本题主要考查线面平行、面面垂直的证明以及线面角的求解方法,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论