版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省长治市县第三中学2022-2023学年高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则(
)A. B.
C.
D.参考答案:A,,.
2.已知函数,那么函数的零点的个数为(
).A. B. C. D.参考答案:C令,解得:(舍去),,令,解得,∴函数的零点的个数是.故选.
3.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得=4a1,则的最小值为()A.B.C.D.不存在参考答案:A【考点】等比数列的通项公式;基本不等式.【分析】把所给的数列的三项之间的关系,写出用第五项和公比来表示的形式,求出公比的值,整理所给的条件,写出m,n之间的关系,用基本不等式得到最小值.【解答】解:∵a7=a6+2a5,∴a5q2=a5q+2a5,∴q2﹣q﹣2=0,∴q=2,∵存在两项am,an使得=4a1,∴aman=16a12,∴qm+n﹣2=16,∴m+n=6∴=(m+n)()=故选A4.已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a参考答案:C【考点】对数的运算性质.【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.5.若内接于以为圆心,为半径的圆,且,则的值为A.
B.
C.
D.
参考答案:A略6.某公司生产三种型号的轿车,产量分别为1600辆、6000辆和2000辆,为检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取(
)A.16,16,16
B.12,27,9
C.8,30,10
D.4,33,11参考答案:C7.函数()的图象经过、两点,则()A.最大值为
B.最小值为
C.最大值为
D.最小值为参考答案:D8.定义运算:,则函数的值域为A.R
B.(0,+∞)
C.[1,+∞) D.(0,1]参考答案:D由题意可得:,绘制函数图像如图中实线部分所示,观察可得,函数的值域为(0,1].本题选择D选项.
9.已知M,N为集合I的非空真子集,且M,N不相等,若N∩?IM=?,则M∪N=()A.M
B.NC.I
D.参考答案:A10.已知函数相邻两个零点之间的距离为,将的图象向右平移个单位长度,所得的函数图象关于y轴对称,则的一个值可能是(
)A.π B. C. D.参考答案:D【分析】先求周期,从而求得,再由图象变换求得.【详解】函数相邻两个零点之间的距离为,则周期为,∴,,图象向右平移个单位得,此函数图象关于轴对称,即为偶函数,∴,,.时,.故选D.【点睛】本题考查函数的图象与性质.考查图象平衡变换.在由图象确定函数解析式时,可由最大值和最小值确定,由“五点法”确定周期,从而确定,再由特殊值确定.二、填空题:本大题共7小题,每小题4分,共28分11.函数(且)恒过定点
.参考答案:(2,1)
12.方程的解集是
参考答案:
13.在数列{an}中,a1=1,an=1+(n≥2),则a5=.参考答案:【考点】8H:数列递推式.【分析】利用数列的递推关系式,逐步求解即可.【解答】解:在数列{an}中,a1=1,an=1+(n≥2),可得a2=1+1=2,a3=1+=,a4=1+=,a5=1+=,故答案为:.14.下列说法中正确的有____________.①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大.③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确.④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.参考答案:③略15.两条平行线2x+3y-5=0和x+y=1间的距离是________.参考答案:答案:16.=.参考答案:4【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;函数的性质及应用.【分析】=+1+=4.【解答】解:=+1+=+1+=4,故答案为:4.【点评】本题考查了指数幂的运算,属于基础题.17..已知直线与直线关于轴对称,则直线的方程为
。参考答案:4x+3y-5=0试题分析:因为直线与直线关于轴对称,所以直线与直线上的点的横坐标互为相反数,纵坐标相同,所以直线的方程为4x+3y-5=0.点评:求解此类问题时,一般是遵循“求谁设谁”的原则.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)已知函数.(1)求的最小正周期和递减区间;(2)当时,求的最大值和最小值,以及取得最值时x的值.参考答案:(1)由已知,有f(x)=cosx?(sinx+cosx)-cos2x+=sinx?cosx-cos2x+=sin2x-(1+cos2x)+=sin2x-cos2x=sin(2x-),所以f(x)的最小正周期.令,得,所以f(x)的单调递减区间为.(2)因为f(x)在区间[-,-]上是减函数,在区间[-,]上是增函数,f(-)=-,f(-)=-,f()=,所以,函数f(x)在闭区间[-,]上的最大值为,此时,最小值为-,此时.
19..已知数列{an}中,.(1)求证:是等比数列,并求数列{an}的通项公式;(2)已知数列{bn},满足.(i)求数列{bn}的前n项和Tn;(ii)若不等式对一切恒成立,求的取值范围.参考答案:(1)答案见解析;(2);.【分析】(1)由题意结合等比数列的定义证明数列是等比数列,然后求解其通项公式即可;(2)(i)首先确定数列的通项公式,然后求解其前n项和即可;(ii)结合恒成立的条件分类讨论n为奇数和n为偶数两种情况确定的取值范围即可.【详解】,,,,,,是以3为首项,3公比的等比数列,..解由得,,,两式相减,得:,.由得,令,则是递增数列,若n为偶数时,恒成立,又,,若n为奇数时,恒成立,,,.综上,的取值范围是20.已知定义域为R的函数是奇函数,(1)求实数a,b的值;
(2)判断并用定义证明在(-∞,+∞)上的单调性;(3)若对任意实数,不等式恒成立,求k的取值范围.参考答案:解:(1)由于定义域为的函数是奇函数,∴∴经检验成立...........................(3分)(2)在上是减函数............................(4分)证明如下:设任意∵∴∴在上是减函数,...........................(8分)(3)不等式,由奇函数得到所以,...........................(10分)由在上是减函数,∴对恒成立...........................(12分)∴或...........................(14分)综上:.
...........................(15分)21.设二次函数f(x)=ax2+bx+c(a>0),方程f(x)﹣x=0的两个根x1,x2满足0<x1<x2<.(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<.参考答案:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2)依题意知因为x1,x2是方程f(x)﹣x=0的根,即x1,x2是方程ax2+(b﹣1)x+c=0的根.∴,因为ax2<1,所以.考点:一元二次方程的根的分布与系数的关系;不等式的证明.专题:证明题;压轴题;函数思想;方程思想;作差法.分析:(1)方程f(x)﹣x=0的两个根x1,x2,所以构造函数,当x∈(0,x1)时,利用函数的性质推出x<f(x),然后作差x1﹣f(x),化简分析出f(x)<x1,即可.(2).方程f(x)﹣x=0的两个根x1,x2,函数f(x)的图象,关于直线x=x0对称,利用放缩法推出x0<;解答:证明:(1)令F(x)=f(x)﹣x.因为x1,x2是方程f(x)﹣x=0的根,所以F(x)=a(x﹣x1)(x﹣x2).当x∈(0,x1)时,由于x1<x2,得(x﹣x1)(x﹣x2)>0,又a>0,得F(x)=a(x﹣x1)(x﹣x2)>0,即x<f(x).x1﹣f(x)=x1﹣=x1﹣x+a(x1﹣x)(x﹣x2)=(x1﹣x)因为所以x1﹣x>0,1+a(x﹣x2)=1+ax﹣ax2>1﹣ax2>0.得x1﹣f(x)>0.由此得f(x)<x1.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度农业科技企业股权分红及转让协议3篇
- 2024音乐素材版权质押合同:视频素材制作融资
- 2025年度新能源汽车共享平台车辆挂靠管理合同3篇
- 2025年度智慧城市基础设施建设项目施工合同范本3篇
- 2025年度渔船租赁与渔业产业链整合服务合同3篇
- 2024铁路员工劳动协议样本一
- 2025年中国汽轮机行业市场供需格局及投资规划建议报告
- 2025年度个人汽车租赁合同绿色出行附加服务4篇
- 2025年度智能机器人研发与技术服务合作协议书4篇
- 2025年陕西西安人才市场有限公司招聘笔试参考题库含答案解析
- 第1本书出体旅程journeys out of the body精教版2003版
- 台资企业A股上市相关资料
- 电 梯 工 程 预 算 书
- 罗盘超高清图
- 参会嘉宾签到表
- 机械车间员工绩效考核表
- 2.48低危胸痛患者后继治疗评估流程图
- 人力资源管理之绩效考核 一、什么是绩效 所谓绩效简单的讲就是对
- 山东省医院目录
- 云南地方本科高校部分基础研究
- 废品管理流程图
评论
0/150
提交评论