版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市阎集乡联合中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆锥的轴截面是等腰直角三角形,侧面积是,则圆锥的体积是(
)A.
B
C
D
参考答案:A2.已知,若,则(
)A. B. C. D.参考答案:C【详解】由,得,则,则.3.直线2x﹣y﹣2=0绕它与y轴的交点逆时针旋转所得的直线方程是()A.﹣x+2y﹣4=0 B.x+2y﹣4=0 C.﹣x+2y+4=0 D.x+2y+4=0参考答案:D【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线斜率之间的关系即可得出.【解答】解:直线2x﹣y﹣2=0绕它与y轴的交点(0,﹣2)逆时针旋转所得的直线方程为:y=x﹣2,即x+2y+4=0,故选:D.4.两条直线y=ax-2与y=(a+2)x+1互相垂直,则a等于()A.2
B.1C.0D.-1参考答案:D5.如图,有6种不同颜色的涂料可供涂色,每个顶点只能涂一种颜色的涂料,其中A和C1同色、B和D1同色,C和A1同色,D和B1同色,且图中每条线段的两个端点涂不同颜色,则涂色方法有()A.720种 B.360种 C.120种 D.60种参考答案:A【考点】排列、组合的实际应用.【分析】根据分步计数原理可得.【解答】解:由题意,先排A,B,C,D,O,有A65=720种方法,再排A1,B1,C1,D1,有1种方法,故一共有720种.故选A.6.已知单位向量满足,则与的夹角为(
)A. B. C. D.参考答案:B【分析】将原式平方,再由向量点积的计算公式得到结果.【详解】单位向量满足,两边平方得到.故答案为:B.【点睛】本题考查了向量点积的公式的应用,以及向量夹角的定义,属于基础题.7.已知
则
(
)A.
B.
C.
D.
参考答案:B8.已知函数y=的定义域为A,集合B={x||x﹣3|<a,a>0},若A∩B中的最小元素为2,则实数a的取值范围是()A.(0,4] B.(0,4) C.(1,4] D.(1,4)参考答案:C【考点】交集及其运算.【专题】集合.【分析】求出函数的定义域确定出A,表示出绝对值不等式的解集确定出B,根据A与B的交集中最小元素为2,列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:由函数y=,得到x2﹣x﹣2≥0,即(x﹣2)(x+1)≥0,解得:x≤﹣1或x≥2,即A=(﹣∞,﹣1]∪[2,+∞),由B中不等式变形得:﹣a<x﹣3<a,即3﹣a<x<a+3,即B=(3﹣a,a+3),∵A∩B中的最小元素为2,∴﹣1≤3﹣a<2,即1<a≤4,则a的范围为(1,4].故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥α,l∥m,则m⊥α B.若l⊥m,m?α,则l⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m参考答案:A【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【分析】若l⊥α,l∥m,根据两平行直线中的一条与平面垂直,另一条也垂直平面,得到m⊥α.【解答】解:若l⊥α,l∥m,根据两平行直线中的一条与平面垂直,另一条也垂直平面,所以m⊥α所以选项A正确;若l⊥m,m?α,则l⊥α或l与α斜交或l与α平行,所以选项B不正确;若l∥α,m?α,则l∥m或l与m是异面直线,所以选项C错误;若l∥α,m∥α,则l∥m或l与m异面或l∥m相交,所以选项D错误;故选A10.已知集合,,则集合(
)
、
、
、
、参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.在等比数列中,若是方程的两根,则--=___________.参考答案:
解析:12.设为实常数,是定义在上的奇函数,当时,,若对一切成立,则的取值范围为_______.参考答案:解析式为:;因为对一切成立,;,,由,所以,解得;13.若函数f(x)=x|2x﹣a|(a>0)在区间[2,4]上单调递增,则实数a的取值范围是.参考答案:(0,4]∪[16,+∞)【考点】函数单调性的性质.【分析】化为分段函数,根据函数的单调性,求的a的范围,利用了数形结合的思想.【解答】解:∵f(x)=x|2x﹣a|(a>0),∴f(x)=,当x≥时,f(x)=2x2﹣ax,函数f(x)在[,+∞)为增函数,当x<时,f(x)=﹣2x2+ax,函数f(x)在(﹣∞,)为增函数,在(,)为减函数又函数f(x)=x|2x﹣a|在[2,4]上单调递增,∴≤2或,又a>0,∴0<a≤4或a≥16.故答案为:(0,4]∪[16,+∞).【点评】本题主要考查了根据函数的单调性求出参数的取值范围的问题,属于基础题.14.抛物线与轴的两个交点的横坐标分别为1和3,则不等式的解集是
.参考答案:(1,3)略15.(5分)点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为
.参考答案:(5,2)考点: 点到直线的距离公式;直线的一般式方程与直线的垂直关系.专题: 直线与圆.分析: 设点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(a,b),则,由此能求出结果.解答: 解:设点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(a,b),则,解得a=5,b=2,∴点A(1,﹣2)关于直线x+y﹣3=0对称的点坐标为B(5,2).故答案为:(5,2).点评: 本题考查满足条件的点的坐标的求法,是基础题,解题时要认真审题,注意对称问题的合理运用.16.若是上的单调递增函数,则实数的取值范围为__________.参考答案:在上单调递增,∴,解出:.17.三角形一边长为14,它对的角为60°,另两边之比为8:5,则此三角形面积为____.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知方程.(Ⅰ)若此方程表示圆,求的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线相交于M,N两点,且OMON(O为坐标原点)求的值;(Ⅲ)在(Ⅱ)的条件下,求以MN为直径的圆的方程.
参考答案:解:(Ⅰ)
D=-2,E=-4,F==20-,
(Ⅱ)
代入得
,
∵OMON得出:
∴
∴
(Ⅲ)设圆心为
半径圆的方程
。19.已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y)又当x2>x1>0时,f(x2)>f(x1)(1)求f(1),f(4),f(8)的值;(2)若有f(2x﹣5)≤3成立,求x的取值范围.参考答案:【考点】抽象函数及其应用;函数单调性的性质;函数的值.【专题】计算题;函数的性质及应用.【分析】(1)由f(xy)=f(x)+f(y),通过赋值法即可求得f(1),f(4),f(8)的值;(2)由“x2>x1>0时,f(x2)>f(x1)”可知f(x)在定义域(0,+∞)上为增函数,从而f(2x﹣5)≤3=f(8)可脱去函数“外衣”,求得x的取值范围.【解答】解:(1)由f(xy)=f(x)+f(y)得:f(1?1)=f(1)+f(1)?f(1)=0;…2分?f(4)=2;…2分?f(8)=3;…2分(2)由“x2>x1>0时,f(x2)>f(x1)”得f(x)在定义域(0,+∞)上为增函数;…2分∴?f(2x﹣5)≤f(8)??<x≤…2分【点评】本题考查抽象函数及其应用,考查函数单调性的性质及函数求值,(2)中判断函数f(x)在定义域(0,+∞)上为增函数是关键,属于中档题.20.已知,,且.求实数的取值范围.参考答案:解:①
时,,
-----------3分②
时,,
-------------6分由①②得
的取值范围是
------------8分
21.(12分)设函数,且,.(1)求的值;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术品交易鉴定规则
- 如何做一个企业规划
- 课件重要理念教学课件
- 洁净区的管理
- 初中日语人教版七年级全册+八年级一二单元单词听写 课件
- 端午节团队活动策划
- 儿童抽搐应急措施
- 快速性心律失常药物治疗
- 初中地理教案课后反思
- 级神奇的纸说课稿
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》测试卷(含答案)
- 江苏省中等职业学校学业水平考试语文卷含答案
- 售后服务保障方案3篇
- 2025届江苏省南通市海安市海安高级中学物理高三上期中联考试题含解析
- 电梯安装主要施工方法及施工技术措施
- 2024-2030年全球辣椒市场投资潜力与未来运营模式分析研究报告
- 2024年天津市专业技术人员继续教育网公需课答案
- 2023-2024学年九年级上学期期末试卷及答案
- 部门安全培训试题(打印)
- 2024-2030年中国电子战行业市场发展趋势与前景展望战略分析报告
- 人教版2024新版八年级全一册信息技术第一单元《从感知到物联网》第1~5课教学设计
评论
0/150
提交评论