版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.1空间直角坐标系1
一.空间直角坐标系为了确定空间点的位置,我们在空间中取一点O作为原点,过O点作三条两两垂直的数轴,通常用x、y、z
表示.轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合.这时,我们在空间建立了一个直角坐标系O-xyz,O叫做坐标原点.22024/5/12如何理解空间直角坐标系?1.三条坐标轴两两垂直是建立空间直角坐标系的基础;2.在空间直角坐标系中三条轴两两垂直,轴的方向通常这样选择:从z轴的正方向看,x轴的半轴沿逆时针方向转90°能与y轴的半轴重合;32024/5/123.让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,那么称这个坐标系为右手直角坐标系,一般情况下,建立的坐标系都是右手直角坐标系;4.在平面上画空间直角坐标系O-xyz时,一般情况下使∠xOy=135°,∠yOz=90°.42024/5/1252024/5/1262024/5/12二.空间点的坐标1.点P的x坐标:过点P作一个平面平行于平面yOz,这样构造的平面同样垂直于x轴,这个平面与x轴的交点记为Px,它在x轴上的坐标为x,这个数x就叫做点P的x坐标;2.点P的y坐标:过点P作一个平面平行于平面xOz,这样构造的平面同样垂直于y轴,这个平面与y轴的交点记为Py,它在y轴上的坐标为y,这个数y就叫做点P的y坐标;72024/5/123.点P的z坐标:过点P作一个平面平行于平面xOy,这样构造的平面同样垂直于z轴,这个平面与z轴的交点记为Pz,它在z轴上的坐标为z,这个数z就叫做点P的z坐标;这样,我们对空间的一个点,定义了一组三个有序实数作为它的坐标,记做P(x,y,z),其中x,y,z也可称为点P的坐标分量.82024/5/1292024/5/121.在空间直角坐标系中,每两条轴分别确定的平面xOy、yOz、xOz叫做坐标平面;2.坐标平面上点的坐标的特征:
xOy平面(通过x轴和y轴的平面)是坐标形如(x,y,0)的点构成的点集,其中x、y为任意实数102024/5/12同理:yOz平面(通过y轴和z轴的平面)是坐标形如(0,y,z)的点构成的点集,其中y、z为任意实数;
xOz平面(通过x
轴和z轴的平面)是坐标形如(x,0,z)的点构成的点集,其中x、z为任意实数;112024/5/123.坐标轴上点的特征:
x轴是坐标形如(x,0,0)的点构成的点集,其中x为任意实数;
y轴是坐标形如(0,y,0)的点构成的点集,其中y为任意实数;
z轴是坐标形如(0,0,z)的点构成的点集,其中z为任意实数。122024/5/124.卦限在空间直角坐标系中,三个坐标平面把空间分成八部分,每一部分称为一个卦限;在坐标平面xOy上方的四个象限对应的卦限称为第I、第II、第III、第IV卦限;在下面的卦限称为第V、第VI、第VII、第VIII卦限;在每个卦限内,点的坐标的各分量的符号是不变的,例如在第I卦限,三个坐标分量x、y、z都为正数;在第II卦限,x为负数,y、z均为正数;132024/5/12142024/5/12八个卦限中点的坐标符号分别为:I:(+,+,+);II:(-,+,+);III:(-,-,+);IV:(+,-,+);V:(+,+,-);VI:(-,+,-);VII:(-,-,-);VIII:(+,-,-);152024/5/12例1.正方体的棱长为2,求各顶点的坐标.解:由图可知,正方体的各个顶点的坐标如下:A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),A1(0,0,2),B1(2,0,2),C1(2,2,2),D1(0,2,2),162024/5/12例2.在空间直角坐标系中,写出点P(x,y,z)的对称点的坐标:(1)关于x轴的对称点是P1
;(2)关于y轴的对称点是P2
;(3)关于z轴的对称点是P3
;(4)关于原点的对称点是P4
;(x,-y,-z)(-x,y,-z)(-x,-y,z)(-x,-y,-z)172024/5/12例3.有下列叙述:①在空间直角坐标系中,在Ox轴上的点的坐标一定是(0,b,0);②在空间直角坐标系中,在yOz平面上点的坐标一定可以写成(0,b,c);③在空间直角坐标系中,在Oz轴上的点的坐标可记为(0,0,c);④在空间直角坐标系中,在xOz平面上点的坐标可写为(a,0,c).其中正确的叙述的个数是(
)(A)1(B)2(C)3(D)4C182024/5/12例4.点A(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业借款合同的格式和条款
- 城中村房产交易合同格式
- 经典丧葬服务合同示范文本
- 陶瓷杯供应协议
- 简约室内门购销合同
- 电机及控制系统升级购销合同
- 水泥购销简化合同
- 权威认证企业品牌服务合同
- 2024年新型建筑材料研发生产投资合同
- 2024年四川省建筑安全员《A证》考试题库及答案
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 2024-2025学年冀人版五年级第一学期期末科学试题(含答案)
- 广东省深圳市宝安区2023-2024学年高三上学期期末考试数学试卷
- 《婴幼儿活动设计与指导》 课件-13-18月儿童亲子活动指导
- 2024-2025学年七年级上学期历史观点及论述题总结(统编版)
- 2024年安全员A证考试题库及答案(1000题)
- 国开 2024 年秋《机电控制工程基础》形考任务1234答案+【2020形考1234答案】全析
- 【MOOC】创新思维与创业实验-东南大学 中国大学慕课MOOC答案
- 广东省湛江市雷州市2023-2024学年四年级上学期语文期末试卷
- 面部设计美学培训
评论
0/150
提交评论