下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
菱形的判定第1课时菱形的判定定理1学习目标:1.理解并掌握菱形的定义判定法及判定定理1.2.学会用这两个判定方法进行有关的论证.自主学习一、知识链接1.菱形的定义是什么?2.菱形有哪些特殊性质?3.运用菱形的定义进行菱形的判定,应具备几个条件?二、新知预习类比平行四边形、矩形的判定方法,我们知道,用定义也可以判定一个四边形是相应的四边形.菱形的定义:____________________________________.几何语言:若▱ABCD,BA=BC,则□ABCD是菱形(或四边形ABCD是菱形).合作探究一、探究过程探究点1:菱形的定义判定及判定定理1问题1:矩形的判定定理,有两个是通过猜想证明矩形的性质的逆命题得到的,那么对于菱形可以吗?可以尝试一下:“菱形的四条边都相等”的逆命题是“”.这个命题成立吗?如图,四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.此法也可以证明菱形的尺规作图方法.【要点归纳】菱形的判定定理1:四条边都相等的四边形是菱形.例1如图,在矩形ABCD中,点E、F、G、H分别是四条边的中点,试问四边形EFGH是什么图形?并说明理由.【针对训练】1.如图,在△ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.例2如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连结DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【方法总结】判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等,可以先尝试证出这个四边形是平行四边形.【针对训练】如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A、B、C的对应点分别是D、E、F,连结AD.求证:四边形ACFD是菱形.二、课堂小结内容菱形的判定定义:有一组邻边相等的平行四边形是菱形判定定理1:四条边都相等的四边形是菱形.当堂检测1.如图,将△ABC沿BC方向平移得到△DCE,连结AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°2.如图,在平行四边形ABCD中,AC平分∠DAB,求证:平行四边形ABCD是菱形.3.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.参考答案自主学习一、知识链接1.解:有一组邻边相等的平行四边形是菱形.2.解:菱形的四条边都相等;菱形的对角线互相垂直.3.解:两个条件:一是平行四边形;二是一组邻边相等.二、新知预习有一组邻边相等的平行四边形是菱形合作探究一、探究过程探究点1:问题1:四条边都相等的四边形是菱形证明:∵AB=BC=CD=DA,即AB=CD,AD=BC,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形.例1解:四边形EFGH是菱形.理由:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.∵点E、F、G、H分别是四条边的中点,∴AE=BE=CG=DG,AH=BF=CF=DH,∴△AEH≌△BEF≌△CGF≌△DGH,∴EF=FG=GH=HE,∴四边形EFGH是菱形.【针对训练】1.证明:∵AD平分∠BAC,∴∠1=∠2.∵AE=AC,AF=AF,∴△AEF≌△ACF.∴EF=CF.同理可得△AED≌△ACD,∴ED=CD.又∵EF=ED,∴EF=CF=ED=CD.∴四边形CDEF是菱形.例2证明:(1)∵△ABC≌△ABD,∴∠CBA=∠DBA.∵CE∥BD,∴∠CEB=∠DBE.∴∠CEB=∠CBE.(2)∵△ABC≌△ABD,∴BC=BD.∵∠CEB=∠CBE,∴CE=CB.∴CE=BD.∵CE∥BD,∴四边形CEDB是平行四边形.∵BC=BD,∴四边形BCED是菱形.【针对训练】证明:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,∴AC=cm.∵AD=CF=10cm,DF=AC=10cm,∴DF=AC=AD=CF.∴四边形ACFD是菱形.当堂检测1.B2.证明:在平行四边形ABCD中,AD∥BC,∴∠DAC=∠ACB.∵AC平分∠DAB,∴∠DAC=∠BA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班主任岗前培训课件
- 如何讲试卷业务培训
- 江西省赣州市宁都县多校2024-2025学年五年级上学期期中语文试题(含答案)
- 河南省百师联盟联考2024-2025学年高二上学期10月月考英语试题(含答案无听力原文及音频)
- 福建省厦门市同安区2024-2025学年九年级上学期11月期中数学试题(无答案)
- 期中摸底测试(1-4单元)(试题)-2024-2025学年四年级上册数学人教版 -
- 大跨度拱形钢结构施工技术13
- 高中语文专题二杂说第3课日喻课件苏教版选修唐宋八大家散文蚜
- 晏子使楚课件
- 江苏省徐州市邳州市2023-2024学年九年级上学期期中抽测化学试卷(含答案解析)
- 深覆合矫正方案
- 尘肺病的鉴别诊断与职业禁忌
- 数控加工编程与操作 课程标准 (融入了课程思政元素)
- 泌尿外科内镜诊疗技术临床应用管理规范
- 生命教育理念下英语学科教学策略研究开题报告
- 田径大单元教学计划
- 2023计算机考研真题及答案
- 监理绿化质量评估报告
- JGJT341-2014 泡沫混凝土应用技术规程
- 第3章 一元一次方程(复习课件)-人教版初中数学七年级上册
- 雨污分流管网工程施工方案
评论
0/150
提交评论