版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市枣林中学高一数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是()A.a≥5 B.a≥3 C.a≤3 D.a≤-5参考答案:A2.若关于x的不等式>m解集为{︱0<<2},则m的值为(
)A.1
B.2
C.3
D.0参考答案:A3.下列所给4个图象中,与所给3件事吻合最好的顺序为
(
)(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。A、(1)(2)(4)
B、(4)(2)(3)
C、(4)(1)(3)
D、(4)(1)(2)参考答案:D略4.点到直线的距离为(
)A.
B.
C.
D.
参考答案:由点到直线的距离公式答案为A.5.定义在上的奇函数满足,且,则的值为(
).A.
B.
C.
D.参考答案:A由于函数为奇函数且,所以,又因为,所以,故选.6.(5分)已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是() A. 2 B. C. 3 D. 参考答案:A考点: 棱台的结构特征.专题: 计算题.分析: 利用棱台的高、斜高、边心距构成直角梯形,通过构造直角三角形,利用勾股定理求出正四棱台的高.解答: 设正四棱台的高为h,斜高为x,由题意可得4??(3+6)x=32+62,∴x=.再由棱台的高、斜高、边心距构成直角梯形、可得h==2,故选A.点评: 本题主要考查正四棱台的结构特征,利用了棱台的高、斜高、边心距构成直角梯形,通过构造直角三角形,利用勾股定理求出正四棱台的高,属于基础题.7.已知为等比数列,,则=(
)
A.
B.
C.
D.参考答案:C8.如果函数(ω>0)的最小正周期为,则ω的值为()A.1 B.2 C.4 D.8参考答案:C【考点】H1:三角函数的周期性及其求法.【分析】由于ω>0,利用正弦函数的周期公式即可求得ω的值.【解答】解:∵f(x)=sin(ωx+)(ω>0)的最小正周期为,∴T==,∴ω=4.故选C.9.已知g(x)=1-2x,f[g(x)]=,则f()等于 (
) A.1 B.3 C.15 D.30参考答案:C略10.直三角形的斜边长为,则其内切半径的最大值为
A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.某县区有三所高中,共有高一学生4000人,且三所学校的高一学生人数之比为.现要从该区高一学生中随机抽取一个容量为的样本,则校被抽到的学生人数为
人.参考答案:12.函数的值域是
.参考答案:略13.设,则=___________参考答案:14.写出函数的单调递增区间__________.参考答案:(-∞,-1)和(0,1)由题意,函数,作出函数的图象如图所示:由图象知,函数的单调递增区间是和.15.设是的两个非空子集,如果存在一个从到的函数满足;(i);(ii)对任意,当时,恒有.那么称这两个集合“保序同构”.现给出以下3对集合:①;②;③A={x|x<0},B={x|x>0}其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号)参考答案:略16.在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=,则sin∠BAC=________.参考答案:17.若,,且,则最小值是_____.参考答案:13【分析】由题得,进而,结合基本不等式求解即可【详解】由题得,故又,当且仅当x=8,y=5,等号成立故答案为13【点睛】本题考查基本不等式求最值,考查换元思想,准确计算变形是关键,是中档题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在数列中,为常数,,且成公比不等于1的等比数列.
(Ⅰ)求的值;
(Ⅱ)设,求数列的前项和参考答案:解析:(Ⅰ)∵为常数,∴.………………2分
∴.
又成等比数列,∴,解得或.…4分
当时,不合题意,舍去.∴.
…7分
(Ⅱ)由(Ⅰ)知,.………………9分
∴
…………11分
∴19.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)确定函数f(x)的解析式.(2)用定义证明f(x)在(﹣1,1)上是增函数.(3)解不等式f(t﹣1)+f(t)<0.参考答案:【考点】3N:奇偶性与单调性的综合.【分析】(1)由奇函数得f(0)=0,求得b,再由已知,得到方程,解出a,即可得到解析式;(2)运用单调性的定义,注意作差、变形和定符号、下结论几个步骤;(3)运用奇偶性和单调性,得到不等式f(t﹣1)+f(t)<0即为f(t﹣1)<﹣f(t)=f(﹣t),得到不等式组,解出即可.【解答】(1)解:函数f(x)=是定义在(﹣1,1)上的奇函数,则f(0)=0,即有b=0,且f()=,则,解得,a=1,则函数f(x)的解析式:f(x)=(﹣1<x<1);(2)证明:设﹣1<m<n<1,则f(m)﹣f(n)==,由于﹣1<m<n<1,则m﹣n<0,mn<1,即1﹣mn>0,(1+m2)(1+n2)>0,则有f(m)﹣f(n)<0,则f(x)在(﹣1,1)上是增函数;(3)解:由于奇函数f(x)在(﹣1,1)上是增函数,则不等式f(t﹣1)+f(t)<0即为f(t﹣1)<﹣f(t)=f(﹣t),即有,解得,则有0<t<,即解集为(0,).20.(本题12分)在中,设与的夹角为,已知,且。(1)求的取值范围;(2)求函数的最大值. 参考答案:(1)∵(1)
(2)由得,∵为与的夹角
∴………6分(2)………9分由于在内是增函数………11分∴(当且仅当时等号成立)………12分21.已知函数,,数列{an}满足,,.(1)求证;(2)求数列的通项公式;(3)若,求{bn}中的最大项.参考答案:(1)见解析;(2);(3)【分析】(1)将化简后可得要求证的递推关系.(2)将(1)中的递推关系化简后得到,从而可求的通项公式.(3)结合(2)的结果化简,换元后利用二次函数的性质可求最大值.【详解】(1)证明:由,,,得.又,∴.(2)∵,即,∴是公比为的等比数列.又,∴.(3)由(2)知,因为,所以,所以,令,则,又因为且,所以所以中的最大项为.【点睛】数列最大项、最小项的求法,一般是利用数列的单调性去讨论,但是也可以根据通项的特点,利用函数的单调性来讨论,要注意函数的单调性与数列的单调性的区别与联系.
22.(本小题满分12分)如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=,等边△ADB所在的平面以AB为轴可转动.(Ⅰ)当平面ADB⊥平面ABC时,求三棱锥的体积;(Ⅱ)当△ADB转动过程中,是否总有AB⊥CD?请证明你的结论.参考答案:(Ⅰ)设AB的中点为O,连接OD,OC,由于△ADB是等边为2的三角形,且,………………2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于土地流转协议
- 颅缝早闭病因介绍
- 医患争议调解协议书
- 2025就业协议样本
- 河南省许昌市(2024年-2025年小学六年级语文)统编版质量测试(下学期)试卷及答案
- 《电机技术应用》课件 3.1.2 直流电机电枢绕组
- (可研报告)天津东疆保税区设立spv公司可行性报告
- (2024)纸塑复合袋生产建设项目可行性研究报告(一)
- (2024)观光餐厅建设项目可行性研究报告(一)
- 2023年天津市滨海新区八所重点学校高考语文联考试卷
- 2025年1月“八省联考”考前猜想卷化学试题(15 4) 含解析
- 冲压团队协作力培训
- 高性能SVG渲染算法
- 2024年公务员考试时事政治考试题(综合题)
- 2024-2030年中国呼叫中心行业发展展望及投资管理模式分析报告权威版
- 2025届浙江省高二物理第一学期期末学业水平测试试题含解析
- 《视觉神经生理学》期末考试复习题库(含答案)
- 《厂内专用机动车辆安全技术规程》TSG81-2022知识培训
- 2024年安全员A证证考试题库及答案(1000题)
- 轴线翻身课件讲稿
- 2024年2个居间人内部合作协议书模板
评论
0/150
提交评论