版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市龙田职业高级中学2022年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合A={-2,-1,0,1,2},,则A∩B=(
)A.{-1,0} B.{0,1}C.{-1,0,1} D.{-2,0,1,2}参考答案:A【分析】解出集合,利用交集的定义可得出集合.【详解】,,.故选:A.【点睛】本题考查集合交集的运算,同时也涉及了一元二次不等式的解法,考查计算能力,属于基础题.2.直线(1﹣2a)x﹣2y+3=0与直线3x+y+2a=0垂直,则实数a的值为()A. B. C. D.参考答案:B【考点】直线的一般式方程与直线的垂直关系.【专题】方程思想;综合法;直线与圆.【分析】由题意可得3(1﹣2a)﹣2=0,解方程可得.【解答】解:∵直线(1﹣2a)x﹣2y+3=0与直线3x+y+2a=0垂直,∴3(1﹣2a)﹣2=0,∴,故选:B.【点评】本题考查直线的一般式方程和直线的垂直关系,属基础题.3.下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1参考答案:C【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.4.若且满足,则的最小值是(
)
A.
B.
C.
D.
参考答案:D略5.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 B.20 C.30 D.40参考答案:B【考点】直线与圆相交的性质.【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可.【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|?|BD|=×10×4=20.故选B【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.6.过的焦点作直线交抛物线与两点,若与的长分别是,则(
)A.
B.
C.
D.参考答案:C略7.设抛物线的焦点为F,两垂直直线过F,与抛物线相交所得的弦分别为AB,CD,则|AB|·|CD|的最小值为(
)A.16
B.8
C.4
D.2参考答案:A设AB倾斜角为,则,因为垂直,所以因此,选A.
8.如果不等式(a>0)的解集为{x|m≤x≤n},且|m-n|=2a,则a的值等于(
)A.1
B.2
C.3
D.4参考答案:B9.在如图的正方体中,M、N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为()A.30° B.45° C.60° D.90°参考答案:C【考点】异面直线及其所成的角.
【专题】常规题型.【分析】连接C1B,D1A,AC,D1C,将MN平移到D1A,根据异面直线所成角的定义可知∠D1AC为异面直线AC和MN所成的角,而三角形D1AC为等边三角形,即可求出此角.【解答】解:连接C1B,D1A,AC,D1C,MN∥C1B∥D1A∴∠D1AC为异面直线AC和MN所成的角而三角形D1AC为等边三角形∴∠D1AC=60°故选C.【点评】本小题主要考查异面直线所成的角、异面直线所成的角的求法,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.10.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为()A. B.C.
D.参考答案:B【考点】椭圆的标准方程.【分析】先求出抛物线的焦点,确定椭圆的焦点在x轴,然后对选项进行验证即可得到答案.【解答】解:∵抛物线的焦点为(2,0),椭圆焦点在x轴上,排除A、C,由排除D,故选B【点评】本题主要考查抛物线焦点的求法和椭圆的基本性质.圆锥曲线是高考的必考内容,其基本性质一定要熟练掌握.二、填空题:本大题共7小题,每小题4分,共28分11.函数(且)的图象恒过定点A,若点A在直线上,其中m,n均大于0,则的最小值为_________.参考答案:函数的图象恒过定点A(-3,-1),
则,即.
.12.已知,则的最小值是
.参考答案:5略13.已知点M的坐标为(5,θ),且tanθ=﹣,<θ<π,则点M的直角坐标为.参考答案:(﹣3,4)【考点】G9:任意角的三角函数的定义.【分析】根据三角函数的定义即可求出【解答】解:∵tanθ=﹣,<θ<π,∴cosθ=﹣,sinθ=,∴x=5cosθ=﹣3,y=5sinθ=4,∴点M的直角坐标为(﹣3,4),故答案为:(﹣3,4)14.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件;则下列结论中正确的是:.①P(B)=;②P(B|A1)=;③事件B与事件A1相互独立;④P(B)的值不能确定,因为它与A1,A2和A3中哪一个发生有关;⑤事件A1,A2和A3两两互斥.参考答案:①②⑤【考点】概率的意义.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用相互独立事件概率乘法公式、条件概率计算公式、互斥事件定义求解.【解答】解:∵甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件,再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,∴事件A1,A2,A3不会同时出现,∴事件A1,A2,A3是两两互斥事件,P(A1)=,P(A2)=,P(A3)=,P(B|A1)==,P(B|A2)=,P(B|A3)=,∴P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=,故①正确,②正确,④错误,⑤正确;事件B发生与否受到事件A1的影响,∴事件B与事件A1不是相互独立事件,故③错误.故答案为:①②⑤.【点评】解题的关键是理解题设中的各个事件,且熟练掌握了相互独立事件的概率计算公式、条件概率的求法.中档题,解题的关键是理解题设中的各个事件,且熟练掌握了相互独立事件的概率计算公式、条件概率的求法.15.将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师2名学生组成,不同的安排方案共有______种参考答案:12试题分析:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种考点:排列、组合及简单计数问题16.若函数在区间上的最大最小值之和为,则的值为
..
参考答案:17.已知等差数列的第r项为s,第s项为r(0<r<s),则_______.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)某汽车驾驶学校在学员结业前,要对学员的驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需参加下次考核。若学员小李独立参加每次考核合格的概率依次组成一个公差为的等差数列,他参加第一次考核合格的概率不超过,且他直到参加第二次考核才合格的概率为。(1)求小李第一次参加考核就合格的概率;(2)求小李参加考核的次数的分布列和数学期望。参考答案:∴的概率分布列为:1234
…11分∴………13分
19.已知抛物线x2=2py(p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD,且M,N分别是AB,CD的中点.设直线AB、CD的斜率分别为、.(Ⅰ)若,且,求△FMN的面积;(Ⅱ)若,求证:直线MN过定点,并求此定点.参考答案:(Ⅰ)抛物线的方程为x2=2y,设AB的方程为联立,得x2﹣2x﹣1=0,,同理∴S△FMN=|FM|·|FN|==△FMN的面积为1.……....5分(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为联立,得,,同理……....7分kMN=∴MN的方程为,即,……....10分又因为所以,∴MN的方程为即∴直线MN恒过定点20.(本小题满分分)
如图在直三棱柱中,,点是的中点.(1)求证;(2)求异面直线与所成角的余弦值的大小;(3)求平面与平面的夹角的余弦值的大小.参考答案:解:∵直三棱柱的底面三边长两两垂直.如图,以为坐标原点,直线分别为轴,轴,轴,建立空间直角坐标系,则…………2分(1)……4分(2)∴异面直线与所成角的余弦值为
………………8分(3)设为平面的法向量.由得:
取
…………10分又平面的一个法向量.∴所以平面与平面的夹角的余弦值是
…………12分21.命题p:y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象全在x轴的上方,命题q:函数f(x)=x2﹣4x+3在[0,a]的值域为[﹣1,3],若p∨q为假命题,求实数a的取值范围.参考答案:【考点】复合命题的真假.【分析】命题p:对a分类讨论:由a2+4a﹣5=0,解得a=1或﹣5,直接验证是否满足题意;由a2+4a﹣5≠0,由题意可得:,解得a的取值范围.命题q:函数f(x)=x2﹣4x+3=(x﹣2)2﹣1,f(0)=3,f(2)=﹣1,及其在[0,a]的值域为[﹣1,3],可得a≥2.若p∨q为假命题,因此p与q都为假命题,即可得出.【解答】解:命题p:由a2+4a﹣5=0,解得a=1或﹣5,a=﹣5时,y=24x+3的图象不可能全在x轴的上方;a=1时,y=3的图象全在x轴的上方,满足题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于土地流转协议
- 颅缝早闭病因介绍
- 医患争议调解协议书
- 2025就业协议样本
- 河南省许昌市(2024年-2025年小学六年级语文)统编版质量测试(下学期)试卷及答案
- 《电机技术应用》课件 3.1.2 直流电机电枢绕组
- (可研报告)天津东疆保税区设立spv公司可行性报告
- (2024)纸塑复合袋生产建设项目可行性研究报告(一)
- (2024)观光餐厅建设项目可行性研究报告(一)
- 2023年天津市滨海新区八所重点学校高考语文联考试卷
- 【企业盈利能力探析的国内外文献综述2400字】
- 危急值的考试题及答案
- 走进鱼类世界智慧树知到期末考试答案章节答案2024年中国海洋大学
- (正式版)SHT 3227-2024 石油化工装置固定水喷雾和水(泡沫)喷淋灭火系统技术标准
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 给药错误护理安全警示教育
- 陕09J01 建筑用料及做法图集
- 2024年华润电力投资有限公司招聘笔试参考题库含答案解析
- 湘少版六年级英语上册《Unit 12 第二课时(Part CPart D)》课堂教学课件公开课
- 《电力电子技术》习题参考答案
- DB37T 5175-2021 建筑与市政工程绿色施工技术标准
评论
0/150
提交评论