黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析_第1页
黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析_第2页
黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析_第3页
黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析_第4页
黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省伊春市宜春龙潭中学高三数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有个面是矩形,体积为,则(

)A.

B.

C.

D.参考答案:D2.若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是()A.[0,1] B.[0,1) C.[0,1)∪(1,4] D.(0,1)参考答案:B【考点】33:函数的定义域及其求法.【分析】根据f(2x)中的2x和f(x)中的x的取值范围一样得到:0≤2x≤2,又分式中分母不能是0,即:x﹣1≠0,解出x的取值范围,得到答案.【解答】解:因为f(x)的定义域为[0,2],所以对g(x),0≤2x≤2且x≠1,故x∈[0,1),故选B.3.若命题“或”是真命题,“且”是假命题,则(

A.命题和命题都是假命题

B.命题和命题都是真命题

C.命题和命题“”的真值不同

D.命题和命题的真值不同参考答案:D略4.已知函数是定义在上的奇函数,当时,,若,,则实数的取值范围为(

)A.

B.

C.

D.

参考答案:【知识点】函数恒成立问题;函数奇偶性的判断;函数最值的应用.B1B4

【答案解析】B解析:当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2.∴当x>0时,.∵函数f(x)为奇函数,∴当x<0时,.∵对?x∈R,都有f(x﹣1)≤f(x),∴2a2﹣(﹣4a2)≤1,解得:.故实数a的取值范围是.故选:B.【思路点拨】把x≥0时的f(x)改写成分段函数,求出其最小值,由函数的奇偶性可得x<0时的函数的最大值,由对?x∈R,都有f(x﹣1)≤f(x),可得2a2﹣(﹣4a2)≤1,求解该不等式得答案.5.定义在上的奇函数满足,且在区间上是增函数,则(

)(A)

(B)

(C)

(D)参考答案:6.已知函数是上的偶函数,且在区间是单调递增的,若,,,则下列不等式中一定成立的是(

A.

B.

C.

D.参考答案:D略7.向量=(2,3),⊥,||=,则等于()A.(﹣2,3) B.(﹣3,2) C.(3,﹣2) D.(﹣3,2)或(3,﹣2)参考答案:D【考点】平面向量数量积的运算.【分析】设向量=(x,y),根据平面向量垂直的定义和模长公式,列出方程组求出解即可.【解答】解:设向量=(x,y),∵=(2,3),⊥,||=,∴,解得或;∴=(﹣3,2)或(3,﹣2).故选:D.8.已知向量,若,则等于(

)

A.

B.

C.

D.参考答案:答案:C9.若{an}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{an}的前n项和Sn>0成立的最大自然数n是()A.4027 B.4026 C.4025 D.4024参考答案:D【考点】等差数列的前n项和.【分析】由题意可知数列是递减数列,由a2013(a2012+a2013)<0,知a2012>0,a2013<0,由此推得答案.【解答】解:由题意可得数列{an}单调递减,由a2013(a2012+a2013)<0可得:a2012>0,a2013<0,|a2012|>|a2013|.∴a2012+a2013>0.则S4025=4025a2013<0,故使数列{an}的前n项和Sn>0成立的最大自然数n是4024.故选D.10.若O为△ABC所在平面内一点,且满足,则△ABC的形状为A、正三角形

B、直角三角形

C、等腰三角形

D、以上都不对参考答案:答案:C二、填空题:本大题共7小题,每小题4分,共28分11.(5分)(2013秋?青原区校级期中)已知两个非零向量与,定义|×|=||||sinθ,其中θ为与的夹角,若=(﹣3,4),=(0,2),则|×|的值为.参考答案:6考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据定义的,求=5,=2,cosθ=,所以sinθ=,所以.解答:解:根据已知条件得:,,cosθ=,∴sinθ=,∴.故答案为:6.点评:考查根据向量的坐标求向量的长度,根据向量的坐标,求两向量夹角的余弦.12.已知{an}是正项等差数列,数列{}的前n项和Sn=,若bn=(﹣1)n?an2,则数列{bn}的前n项和T2n=.参考答案:2n2+3n【考点】数列的求和.【分析】设正项等差数列{an}的公差为d>0,由数列{}的前n项和Sn=,可得=,+=,解得a1,d.可得an.可得b2n﹣1+b2n,即可得出.【解答】解:设正项等差数列{an}的公差为d>0,∵数列{}的前n项和Sn=,∴=,+=,解得a1=2,d=1.∴an=2+(n﹣1)=n+1.∴bn=(﹣1)n?an2=(﹣1)n(n+1)2,b2n﹣1+b2n=﹣(2n)2+(2n+1)2=4n+1.则数列{bn}的前n项和T2n==2n2+3n.故答案为:2n2+3n.【点评】本题考查了分组求和、等差数列的求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.13.函数

,若,则的取值范围是

.参考答案:14.已知某几何体的三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,则该几何体的表面积是

;体积是

.参考答案:

试题分析:由题设三视图中所提供的信息可知该几何体是一个四棱锥和一个三棱锥的组合体,如图其全面积,其体积为,故应填;.考点:三视图的识读与几何体的体积的运用.15.已知x和y是实数,且满足约束条件的最小值是

.参考答案:做出不等式对应的可行域如图,由得,做直线,平移直线,由图象可知当直线经过C点时,直线的截距最小,此时最小,此为,代入目标函数得。16.已知复数满足,则=

参考答案:1略17.命题“,使得.”的否定是___________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列中,点

在函数的图象上,.数列的前项和为,且满足当时,

(1)证明数列是等比数列;

(2)求;

(3)设,,求的值.参考答案:解:(Ⅰ)由已知,

,两边取对数得

,即

是公比为2的等比数列.

(Ⅱ)当时,展开整理得:,若,则有,则矛盾,所以,所以在等式两侧同除以得,为等差数列

(Ⅲ)由(Ⅰ)知

=

。.19.已知函数与函数均在时取得最小值,设函数,为自然对数的底数.(I)求实数的值;(II)证明:是函数的一个极大值点;(III)证明:函数的所有极值点之和的范围是.参考答案:解:(I),令得,列表:∴当时,函数取得最小值,∴,

当时,函数是增函数,在没有最小值,当时,函数,是最小值,取等号时,,

由,得;

(II),,∵,∴在递减,在递增,∵,∴时,,递增,时,,递减,∴是函数的一个极大值点(III)∵,,在递增,∴在存在唯一实数,使得,在递增,∴时,,递减,时,,递增,∴函数在有唯一极小值点,

∵,∴,由(II)知,在有唯一极值点,∴函数的所有极值点之和.

略20.已知函数f(x)=x2﹣ax(a≠0),g(x)=lnx,f(x)的图象在它与x轴异于原点的交点M处的切线为l1,g(x﹣1)的图象在它与x轴的交点N处的切线为l2,且l1与l2平行.(1)求a的值;(2)已知t∈R,求函数y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,并且使得不等式|F(α)﹣F(β)|<|F(x1)﹣F(x2)|恒成立,求实数m的取值范围..参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(1)利用导数的几何意义,分别求两函数在与两坐标轴的交点处的切线斜率,令其相等解方程即可得a值;(2)令u=xlnx,再研究二次函数u2+(2t﹣1)u+t2﹣t图象是对称轴u=,开口向上的抛物线,结合其性质求出最值;(3)先由题意得到F(x)=g(x)+g′(x)=lnx+,再利用导数工具研究所以F(x)在区间(1,+∞)上单调递增,得到当x≥1时,F(x)≥F(1)>0,下面对m进行分类讨论:①当m∈(0,1)时,②当m≤0时,③当m≥1时,结合不等式的性质即可求出a的取值范围.【解答】解:(1)y=f(x)图象与x轴异于原点的交点M(a,0),f′(x)=2x﹣a,y=g(x﹣1)=ln(x﹣1)图象与x轴的交点N(2,0),g′(x﹣1)=由题意可得kl1=kl2,即a=1;(2)y=f[xg(x)+t]=[xlnx+t]2﹣(xlnx+t)=(xlnx)2+(2t﹣1)(xlnx)+t2﹣t,令u=xlnx,在x∈[1,e]时,u′=lnx+1>0,∴u=xlnx在[1,e]单调递增,0≤u≤e,u2+(2t﹣1)u+t2﹣t图象的对称轴u=,抛物线开口向上,①当u=≤0,即t≥时,y最小=t2﹣t,②当u=≥e,即t≤时,y最小=e2+(2t﹣1)e+t2﹣t,③当0<<e,即<t<时,y最小=y|u==﹣;(3)F(x)=g(x)+g′(x)=lnx+,F′(x)=≥0,所以F(x)在区间(1,+∞)上单调递增,∴当x≥1时,F(x)≥F(1)>0,①当m∈(0,1)时,有,α=mx1+(1﹣m)x2>mx1+(1﹣m)x1=x1,α=mx1+(1﹣m)x2<mx2+(1﹣m)x2=x2,得α∈(x1,x2),同理β∈(x1,x2),∴由f(x)的单调性知

0<F(x1)<F(α)、f(β)<f(x2),从而有|F(α)﹣F(β)|<|F(x1)﹣F(x2)|,符合题设.②当m≤0时,α=mx1+(1﹣m)x2≥mx2+(1﹣m)x2=x2,β=mx2+(1﹣m)x1≤mx1+(1﹣m)x1=x1,由f(x)的单调性知,F(β)≤F(x1)<f(x2)≤F(α),∴|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符,③当m≥1时,同理可得α≤x1,β≥x2,得|F(α)﹣F(β)|≥|F(x1)﹣F(x2)|,与题设不符,∴综合①、②、③得m∈(0,1).21.已知函数f(x)=x3+x2+ax+b(a,b为常数),其图象是曲线C.(1)当a=﹣2时,求函数f(x)的单调减区间;(2)设函数f(x)的导函数为f′(x),若存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,求实数b的取值范围;(3)已知点A为曲线C上的动点,在点A处作曲线C的切线l1与曲线C交于另一点B,在点B处作曲线C的切线l2,设切线l1,l2的斜率分别为k1,k2.问:是否存在常数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】压轴题;导数的综合应用.【分析】(1)先求原函数的导数,根据f′(x)<0求得的区间是单调减区间,即可;(2)由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则存在唯一的实数根x0,即b=2x3+x2+x存在唯一的实数根x0,就把问题转化为求函数最值问题;(3)假设存在常数λ,依据曲线C在点A处的切线l1与曲线C交于另一点B,曲线C在点B处的切线l2,得到关于λ的方程,有解则存在,无解则不存在.【解答】解:(1)当a=﹣2时,函数f(x)=x3+x2﹣2x+b则f′(x)=3x2+5x﹣2=(3x﹣1)(x+2)令f′(x)<0,解得﹣2<x<,所以f(x)的单调递减区间为(﹣2,);(2)函数f(x)的导函数为由于存在唯一的实数x0,使得f(x0)=x0与f′(x0)=0同时成立,则即x3+x2+(﹣3x2﹣5x﹣1)x+b=0存在唯一的实数根x0,故b=2x3+x2+x存在唯一的实数根x0,令y=2x3+x2+x,则y′=6x2+5x+1=(2x+1)(3x+1)=0,故x=﹣或x=﹣,则函数y=2x3+x2+x在(﹣∞,),(﹣,+∞)上是增函数,在(,﹣)上是减函数,由于x=﹣时,y=﹣;x=﹣时,y=﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论