版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题03等式与不等式-2024年高考数学母题题源解密(全国通用)含解析专题03等式与不等式考向一基本不等式的应用【母题来源】2022年新高考全国II卷【母题题文】若x,y满足,则()A.B.C.D.【答案】BC【试题解析】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件【得分要点】对原不等式进行化简、变形;符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解;判断等号成立的条件;(4)利用“1”的合理变换是解题.考向二线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x,y满足约束条件则的最大值是() B.4 C.8 D.12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示,转化目标函数为,上下平移直线,可得当直线过点时,直线截距最小,z最大,所以.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力.常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值一、单选题1.(河北省保定市2021-2022学年高二下学期期末数学试题)已知,则下列不等式一定成立的是(
)A.B.C.D.2.(2022·广东惠州·高三阶段练习)已知圆关于直线(,)对称,则的最小值为(
)A. B.9 C.4 D.83.(2022·四川达州·高一期末(理))已知实数x,y满足,则的最小值是(
)A.2 B. C. D.4.(2022·江苏·宿迁中学高二期末)已知实数满足,则的最小值为(
)A. B. C. D.5.(2022·江西上饶·高二期末(文))已知正数m,n满足,则的最小值为(
)A.3 B. C. D.6.(2022·江西吉安·高二期末(文))若关于的不等式恒成立,则实数的取值范围为(
)A. B. C. D.7.(2022·湖南·高二阶段练习)已知偶函数在上单调递减,若,则满足的x的取值范围是(
)A. B.C. D.8.(2022·陕西·武功县普集高级中学一模(文))使不等式成立的一个充分不必要条件是(
)A.且 B.C. D.二、填空题9.(2022·四川泸州·三模(理))已知x、,且,给出下列四个结论:①;②;③;④.其中一定成立的结论是______(写出所有成立结论的编号).10.(2022·上海市川沙中学高二期末)若关于x的不等式有解,则实数m的取值范围___________.11.(2022·浙江·镇海中学高二期末)已知实数,,则的最小值为___________.12.(2020·云南德宏·高三期末(理))关于函数有下列四个命题:①,使关于轴对称.②,都有关于原点对称.③,使在上为减函数.④若,,使有最大值.其中真命题的序号是____________.三、解答题13.(2021·黑龙江·大庆外国语学校高二期末)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.14.(2022·江西抚州·高二期中(文))已知a,b都是正数.(1)若,证明:;(2)当时,证明:.15.(2022·四川巴中·高一期末(理))已知函数,的解集为或.(1)求实数、的值;(2)若时,求函数的最小值.16.(2022·浙江舟山·高二期末)第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,是由中国举办的国际性奥林匹克赛事,于2022年2月4日开幕,2月20日闭幕.本届奥运会共设7个大项,15个分项,109个小项.北京赛区承办所有的冰上项目和自由式滑雪大跳台,延庆赛区承办雪车、雪橇及高山滑雪项目,张家口赛区承办除雪车、雪橇、高山滑雪和自由式滑雪大跳台之外的所有雪上项目,冬奥会的举办可以带动了我国3亿人次的冰雪产业,这为冰雪设备生产企业带来了新的发展机遇,某冰雪装备器材生产企业,生产某种产品的年固定成本为2000万元,每生产x千件,需另投入成本(万元).经计算若年产量x千件低于100千件,则这x千件产品成本;若年产量x千件不低于100千件时,则这x千件产品成本.每千件产品售价为100万元,为了简化运算我们假设该企业生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?专题03等式与不等式考向一基本不等式的应用【母题来源】2022年新高考全国II卷【母题题文】若x,y满足,则()A.B.C.D.【答案】BC【试题解析】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件【得分要点】对原不等式进行化简、变形;符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解;判断等号成立的条件;(4)利用“1”的合理变换是解题.考向二线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x,y满足约束条件则的最大值是() B.4 C.8 D.12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示,转化目标函数为,上下平移直线,可得当直线过点时,直线截距最小,z最大,所以.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力.常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值。一、单选题1.(河北省保定市2021-2022学年高二下学期期末数学试题)已知,则下列不等式一定成立的是(
)A.B.C.D.【答案】D【解析】【分析】可以利用特殊值进行排除,以及利用不等式的性质进行判断.【详解】当时,,则A错误;当时,,则B错误;当时,,则C错误;当时,,当时,,当时,,则D正确.故选:D.2.(2022·广东惠州·高三阶段练习)已知圆关于直线(,)对称,则的最小值为(
)A. B.9 C.4 D.8【答案】B【解析】【分析】由题可得,然后利用基本不等式即得.【详解】圆的圆心为,依题意,点在直线上,因此,即,∴,当且仅当,即时取“=”,所以的最小值为9.故选:B.3.(2022·四川达州·高一期末(理))已知实数x,y满足,则的最小值是(
)A.2 B. C. D.【答案】B【解析】【分析】根据约束条件画出可行域,根据目标函数的几何意义即可求解最小值.【详解】根据约束条件,画出可行域(如图),可看成可行域内的点与定点的距离,由图可知:当过点的直线与垂直时,距离最小,此时最小距离为:.故选:B4.(2022·江苏·宿迁中学高二期末)已知实数满足,则的最小值为(
)A. B. C. D.【答案】B【解析】【分析】利用基本不等式“1”的代换求的最值,注意等号成立条件.【详解】由题设,,所以,当且仅当时等号成立,所以的最小值为.故选:B5.(2022·江西上饶·高二期末(文))已知正数m,n满足,则的最小值为(
)A.3 B. C. D.【答案】B【解析】【分析】化简,再利用基本不等式得解.【详解】解:由题得.(当且仅当等号成立).故选:B6.(2022·江西吉安·高二期末(文))若关于的不等式恒成立,则实数的取值范围为(
)A. B. C. D.【答案】B【解析】【分析】讨论和两种情况,即可求解.【详解】当时,不等式成立;当时,不等式恒成立,等价于.综上,实数的取值范围为.故选:B.7.(2022·湖南·高二阶段练习)已知偶函数在上单调递减,若,则满足的x的取值范围是(
)A. B.C. D.【答案】D【解析】【分析】先利用偶函数的性质得到在上单调递增,.把原不等式转化为或即可解得.【详解】因为偶函数在上单调递减,所以在上单调递增,且,又,所以.由,得或所以或解得或.故x的取值范围是.故选:D.8.(2022·陕西·武功县普集高级中学一模(文))使不等式成立的一个充分不必要条件是(
)A.且 B.C. D.【答案】D【解析】【分析】求解已知不等式,从集合的角度,以及充分性和必要性的定义,即可选择.【详解】因为,故不等式的解集为且,故不等式成立的一个充分不必要条件所构成的集合应是且的真子集,显然,满足题意的只有.故选:D.二、填空题9.(2022·四川泸州·三模(理))已知x、,且,给出下列四个结论:①;②;③;④.其中一定成立的结论是______(写出所有成立结论的编号).【答案】①④【解析】【分析】利用基本不等式可判断①和④,取特殊值x=0、y=3可判断②,取特殊值y=可判断③.【详解】对于①,∵,∴由得,,即,解得(当且仅当时取等号),故①一定成立;对于②,当3时,成立,但不成立,故②不一定成立;对于③,当时,由得,则,即,故③不一定成立;④将两边平方得,∴,由①可知:,∴,当且仅当时取等号,因此④一定成立﹒故答案为:①④﹒【点睛】本题①和④利用基本不等式即可求解,需要熟练运用基本不等式求范围.对于②和③,取特殊值验算即可快速求解﹒10.(2022·上海市川沙中学高二期末)若关于x的不等式有解,则实数m的取值范围___________.【答案】【解析】【分析】根据题意可得,根据可得,代入求解.【详解】根据题意可得∵∴,即,则或故答案为:.11.(2022·浙江·镇海中学高二期末)已知实数,,则的最小值为___________.【答案】##【解析】【分析】依题意利用基本不等式计算可得;【详解】解:因为,,所以当"取等号“综上所述:的最小值为;故答案为:12.(2020·云南德宏·高三期末(理))关于函数有下列四个命题:①,使关于轴对称.②,都有关于原点对称.③,使在上为减函数.④若,,使有最大值.其中真命题的序号是____________.【答案】②③④【解析】【分析】对①②,判断的奇偶性即可;对③④,根据对勾函数的性质判断即可;【详解】由题,因为,且,故为奇函数,①错②对;当时,由对勾函数的性质,在上为减函数,故③正确;又当时,若,则在处取得最大值,故④正确;故答案为:②③④三、解答题13.(2021·黑龙江·大庆外国语学校高二期末)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.【答案】(1)(2)【解析】【分析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可(1)当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真时,实数x的取值范围为.若为真,则,解得实数x的取值范围为.(2)若p是q的必要不充分条件,则且.设,,则,又.由,得,因为,则,有,解得因此a的取值范围为.14.(2022·江西抚州·高二期中(文))已知a,b都是正数.(1)若,证明:;(2)当时,证明:.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据可得,再结合化简,利用基本不等式证明即可(2)根据证明的不等式逆推即可(1)证明:由,得,即,当且仅当时“=”成立.所以.(2)要证,只需证,即证,即证,因为,所以上式成立,所以成立.15.(2022·四川巴中·高一期末(理))已知函数,的解集为或.(1)求实数、的值;(2)若时,求函数的最小值.【答案】(1),(2)【解析】【分析】(1)分析可知、是方程的两个根,利用一元二次方程根与系数的关系可求得、的值;(2)求得,利用基本不等式可求得在上的最小值.(1)解:因为关于的不等式的解集为或,所以,、是方程的两个根,所以,,解得.(2)解:由题意知,因为,由基本不等式可得,当且仅当时,即时,等号成立故函数的最小值为.16.(2022·浙江舟山·高二期末)第24届冬季奥林匹克运动会
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新人教版九年级历史与社会第一单元第一课第一框1.11第一次世界大战说课稿001
- 人教版七年级历史与社会上册2.2地形多样 说课稿001
- 活动二《农谚知多少》(说课稿)-2023-2024学年五年级下册综合实践活动沪科黔科版
- 责任在肩青春志
- 第一单元第3课《算术运算符和表达式》说课稿设计 2023-2024学年浙教版(2020)初中信息技术八年级上册001
- 洞察梦想舟青春勇向前
- 广东省广州市海珠区2023-2024学年七年级上学期期末英语试题(答案)
- 02企业纳税核算及申报-项目二
- 2024港口装卸、船舶代理合同
- 调研报告中文课件
- 2024年甘肃省公务员录用考试《行测》试题及答案解析
- 职业技术学院《工程力学》课程标准
- 消防工程技术专业毕业实习报告范文
- 2024年高等教育法学类自考-00229证据法学考试近5年真题附答案
- 科技成果技术成熟度评估规范
- 安徽省合肥市一六八中2025届高二生物第一学期期末教学质量检测试题含解析
- 医院后勤管理作业指导书
- 六年级下册心理健康教育教案-8 男女生交往小闹钟辽大版
- 【课件】第五单元化学反应的定量关系新版教材单元分析九年级化学人教版(2024)上册
- 国库资金支付管理办法
- 中医调理理疗免责协议书模板
评论
0/150
提交评论